
Action Recognition with Multiscale Spatio-Temporal Contexts

Jiang Wang , Zhuoyuan Chen and Ying Wu
EECS Department, Northwestern University

2145 Sheridan Road, Evanston, IL 60208
{jwa368,zch318,yingwu}@eecs.northwestern.edu

Abstract

The popular bag of words approach for action recogni-
tion is based on the classifying quantized local features den-
sity. This approach focuses excessively on the local features
but discards all information about the interactions among
them. Local features themselves may not be discriminative
enough, but combined with their contexts, they can be very
useful for the recognition of some actions. In this paper,
we present a novel representation that captures contextual
interactions between interest points, based on the density
of all features observed in each interest point’s mutliscale
spatio-temporal contextual domain. We demonstrate that
augmenting local features with our contextual feature sig-
nificantly improves the recognition performance.

1. Introduction

Action recognition and categorization in video have re-
ceived great attention because of its difficulty and potential
applications. It can be used in human-computer interface,
video surveillance, video indexing, and many other areas.
Recently, various approaches have been proposed and many
progresses have been achieved. However, it still remains a
challenging problem due to several fundamental difficulties.

The first difficulty arises from the tremendous intra-
pattern variations in human actions. The same type of ac-
tion can have huge differences in their visual appearance,
variations in performing speed, clothing, and viewpoints.

The spatio-temporal nature of the data also adds to the
complexity. Modeling spatio-temporal dependencies for 3D
video data poses a big challenge. To simplify the task,
researchers usually resort to schemes that assume condi-
tional independence across spatial and temporal domains
such as the bag of words method, which summarizes a
video by the histogram of feature occurrences. Recently,
many bag of words methods using local spatio-temporal de-
scriptors have been proposed for action recognition tasks
[20, 12, 16, 5, 19, 9]. Such descriptors are useful in repre-
senting the local appearance of the 3D salient points. They

Representa�on

Mul�ple Kernel Learning

Local appearance features

Feature extrac�on 

Representa�on

Appearance 

density
: Contextual densi�es

Interest point 

detec�on

Contextual features

Integra�on

Figure 1. A schematic framework of spatio-temporal contextual
feature

are robust to viewpoint and scale changes, simple to imple-
ment, and have achieved promising results.

However, the bag of words methods have their limita-
tions. One important limitation is that they largely ignore
the spatio-temporal relationship among the local appear-
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ance features, such as temporal order of the action, spatial
arrangement of objects, and motion trajectories. For exam-
ple, in Fig.2, the actions in the left and right video volumes
are considered the same in the bag of words method. How-
ever, the semantic meaning of these two actions may be dif-
ferent due to the spatio-temporal configuration differences.
In order to solve this problem, we introduce a novel contex-
tual feature to incorporate the spatio-temporal dependencies
into the bag of words model.

The termcontext is widely used in object recognition
area. Contextual information can be very important for ac-
tion recognition, because an action is characterized by the
interaction between human parts or between human and ob-
jects. In the action categorization field, the context usu-
ally refers to the information about typical configurations
of objects in a scene. It can be either global or local. The
global context usually exploits scene configuration as an
extra source of global information across categories [26].
Local context captures the local arrangement of the objects
or regions [36, 21]. Both of those contextual features have
proved to be beneficial to action recognition tasks, but most
of the existing contextual features tend to be complicated.

We consider the problem of designing simple but dis-
criminative local contextual descriptors in this paper. Tra-
ditional contextual features either use object detection [22]
or segmentation [21] as preprocessing, or require complex
learning methods such as AdaBoost [9] or discriminative
configuration mining [12]. Although these approaches have
achieved good recognition results, they have two short-
comings. First, these processing procedures are time-
consuming. Second, because the object recognition and ma-
chine leaning procedures are error-prone, especially when
the data is noisy, using these procedures may add noise to
the results.

This paper presents a new approach to incorporating con-
texts into action recognition. In the proposed contextual
model, there are some feature classes, each of which is as-
sociated with an individual context. One individual con-
text for one pixel is represented by the posterior density of
this particular feature class at this pixel location, basedon
the density of all features observed in its multiscale spatio-
temporal contextual domains. Its total context is the col-
lection of these individual ones. As this density is able to
reflect the change in the action-object interaction, contex-
tual features exhibit more discriminative power compared
to traditional local appearance features.

In our approach, we extract spatio-temporal extrema
points as interest points. Multiple channels of contextual
features are generated for each interest point. For compu-
tational efficiency and performance consideration, multiple
kernel learning is used to select the best combination of
channels in a multi-channel SVM classification. An illus-
tration of the framework of the proposed method is shown

Figure 2. Two spatio-temporal video volumes with interest points
in them. The color of the points represents the feature classes .A
simple bag of words approach will consider both volumes to be
identical as it does not consider the spatio-temporal configuration.
But the two volumes may express different actions.

in Fig. 1.
The novelty of this paper includes the following aspects:

(1) It augments local appearance features with contextual
method as features that represent the relationship among the
3D salient points. (2) It utilizes an efficient classification
method to integrate contextual features with local features.

We apply our approach to learn human action categories
on the KTH [32] and the ADL [28] datasets, and show that
the proposed method which includes contextual features is
able to outperform some state of the art methods.

After a brief review of the related work in Sec.2, the de-
scription of the contextual feature is given in Sec.3. We
introduce our classification framework that integrates local
appearance feature and contextual features.. The experi-
mental results are reported in Sec.5. Sec. 6 concludes
this paper.

2. Related Work

Action recognition is an important topic in computer
vision field. Researchers have proposed many different
kinds of approaches to solve this problem. One type of
approaches uses motion trajectories to represent actions
[34, 31, 18, 28], and requires target or feature tracking. An-
other type of approaches uses sequences of silhouettes or
body contours to model actions [23, 30, 24, 23], and this
type of methods require background subtraction. Recently,
action categorization method that uses local spatio-temporal
features has drawn a lot of attention, because of its robust-
ness to viewpoint and scale change, as well as superior per-
formance [20, 13, 16, 5, 19, 38].

The context information can be used to help object
and action recognition problem. [11] gives a compre-
hensive review of the contextual features and machine
learning models that integrate contextual information into
object recognition frameworks. Previous contextual fea-
tures in action recognition include the scene information
[25, 22], spatio-temporal relationship between trajectories



[34], neighborhood-based feature [17], spatial visual feature
arrangement [36] and object-level interaction characterized
by graphical models [10, 37, 14].

Different from those approaches, our method represents
the contextual information as spatio-temporal statisticsin
the 3D neighborhood of each interest point. Other recent
work also used feature-centered approach [9, 13], but em-
ployed different representations. [13] uses co-occurrence
transaction to describe context feature, which may suffer
from the loss of information. [9] uses AdaBoost to learn
a classifier in each interest point’s local region, and uses
classification score as contextual feature. [27] represents
the relationship between local features as the distribution of
quantized location difference between each pair of interest
points.

Some work in object recognition is related to our pro-
posed work as well. In [1], shape context at the represent
point captures the distribution of the remaining points rela-
tive to it, thus offering a globally discriminative character-
ization. In [35], local feature statistics is used to compute
more accurate optical flow. In [39], a self-supervised clus-
tering algorithm is proposed with the help of local contex-
tual information.

3. Contextual Feature Model

We propose to capture local contextual information by
spatio-temporal statistics. Given a video sequence, we first
extract spatio-temporal interest points{x1, · · · ,xP }, then
accumulate the local features around each interest point’s
spatio-temporal contextual domain, and obtain different sets
of contextual features:H = {H1(x), . . .HM (x)}.

In the following, we give a detailed description of our
approach. We start with the spatio-temporal interest points
extraction.

3.1. Spatio-temporal Interest Points

Spatio-temporal features have shown good performance
for action recognition[20]. They provide a compact rep-
resentation for video, and achieve robustness against intra-
class variations. To detect an interest point, we use the Har-
ris3D corner detector [20], which is an extension of the 2D
Harris corner. MatrixU is defined as:

U =
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where Lx, Ly and Lt are the gradients of Gaussian-
smoothed video in horizontal, vertical and temporal direc-
tion. The Harris3D corner detector finds points whoseU

has large eigenvalues. Those points are generally extrema
points in the spatio-temporal space.

For each interest point, we extract the histogram-of-
oriented-gradients (HOG) [7] and histogram-of-optical-

flow (HOF) features [8], which characterize the local ap-
pearance (including visual appearance and motion appear-
ance) of the interest points. These features are called local
features in this paper.

The local features are clustered intoN classes by k-
means algorithm. TheN centers of these clusters are called
visual words. Each local feature can be mapped into a vi-
sual word.

3.2. Contextual Features

Consider a spatiotemporal point that is located atx =
[u, v, t], whereu, v and t are its horizontal, vertical and
temporal coordinates. The point is associated with a local
feature vectorf(x) ∈ R in a feature space. The feature
space has been quantized to a finite set ofN discrete feature
classes{ω1, . . . , ωN}, each of which is represented by its
local appearance visual word.

A point is not isolated but surrounded by its spatial and
temporal context. In our approach,P multiscale channels
of contextual features are computed. Different channels of
contextual features are computed within cuboids that are
of different sizes and shapes. We aim to capture various
types of interactions by using multiple channels of contex-
tual features. For example, contextual domains with short
spatial support and long temporal support can capture tem-
poral evolution information.

For example, as shown in Fig.3, we have three chan-
nels of contextual features. These contextual features have
contextual domains with different shapes, and can capture
different types of contextual information.

For each channel of contextual features, a regular grid is
used to encode spatio-temporal information within the lo-
cal neighborhood of an interest point. Each cuboid in this
regular grid defines a contextual domain. The context for
feature classωi in thejth contextual domain is defined as

Cij = {y|f(y) ∈ ωi, y ∈ Ωj(x)} (2)

whereΩj(x) is jth spatio-temporal contextual domain ofx
with predefined size. This definition follows the definition
in [35].

The total context injth contextual domainΩj(x) is the
union of all individual context inside it,i.e.

Cj =
N
⋃

i=1

Cij (3)

Because we are interested in the spatio-temporal config-
uration of the interest points. To represent the interaction
around pointx, we use each feature class’s posterior den-
sity atx: p(ωi|x). We have:

p(ωi|x) = p(x|ωi)p(ωi) (4)
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Figure 3. Three channels of contextual features. The purplecon-
textual feature channel’s contextual domains havex,y andt scales,
while the blue and green contextual feature channel’s contextual
domain has larger support int andy directions, respectively.

where the priorp(ωi) can be estimated within a contextual
domain, andp(x|ωi) can be computed using the kernel den-
sity estimation:

p(x|ωi, Cj) =
∑

xk∈Cij

K(x,xk) (5)

whereK(., .) is a 3D Gaussian kernel:

K(x,xk) ∝ exp

(

−

(

(x− xk)
2

δ2x
+

(y − yk)
2

δ2y
+

(t− tk)
2

δ2t

))

(6)
whereδx, δy and δt are independent spatial and temporal
scale parameters.

For each contextual features channel of interest pointx,
a regular grid is used to encode spatio-temporal information
about the local neighborhood of an interest point. Specifi-
cally, each point hasM = Wx ×Wy ×Wt cuboids around
it. Each cuboid corresponds to a spatio-temporal contex-
tual domainΩj . The contextual feature containsM N -
dimensional histogram vector{H1(x), . . . HM (x)}. Ev-
ery histogramHj(x) = {b1j, · · · , bNj} accumulates the
probability of distance-weighted occupancies of each fea-
ture classωi within a given contextual domain,i.e.,

b0ij =
∑

xk∈Cij

K(x,xk) (7)
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Figure 4. A simple contextual feature example withWx =

1,Wy = 1,Wt = 2. The left and right histograms are the
distance-weighted probability of occupancies of each feature class
in the red and yellow regions respectively. The final contextual
feature is the concatenation of these two histogram.

and

bij = b0ij/

N
∑

i=1

b0ij . (8)

TheseM histograms encode the probabilitiesp(x|ωi) in
all contextual domains. We concatenateM histograms to
form one channel of our final contextual descriptor for a
given pointx:{H1(x), . . . HM (x)}. With different selec-
tions ofWx,Wy ,Wt, we can obtain multiple channels of
contextual features. These contextual features characterize
the relationship between the interest points.

For example, ifWx = 1,Wy = 1,Wt = 2 for a contex-
tual feature channel, there are two contextual domains for
an interest pointx along temporal direction, as illustrated
by red and yellow cuboidsC1 andC2 in Fig.4. We accumu-
late the probabilities of distance-discounted occurrences for
each feature class inC1 andC2, and obtain two histograms
H1(x) andH2(x). This channel of contextual feature forx

is {H1(x), H2(x)}.

In order to show the properties of our approach, we ex-
amine the behavior of our contextual features in two cases:
First, we consider two actions: “catch a ball” and “throw
a ball”. The contextual features for those two actions are
different if Wt > 1, because the two actions have differ-
ent temporal directions. Second, the “playing high bar” and
“ walking” have similar local motion, but can be discrimi-
nated by contextual features withWy > 1, as these actions
have different spatial orientations. In conclusion, our con-
textual feature is descriptive of the spatio-temporal interac-
tions of objects or features.



4. Integrating Contextual Features

4.1. Multiclass Multiple Kernel Learning

The channels of contextual features essentially share
some information with each other. Training with all these
features is computationally expensive. Thus, we use a lin-
ear combination of these features for efficiency. To opti-
mize the combination of the features is a feature selection
problem. Multiple kernel learning (MKL) [4] has proved
to be a very good way of optimizing kernel weights while
training a SVM. Since in our application, more than two
classes are to be distinguished, the multiclass multiple ker-
nel learning[40] is used.

A common approach to multiclass classification is the
use of joint feature mapΦ(x, y) on dataX and labelsY
together with a linear output function

fw,b(x, y) = 〈w,Φ(x, y)〉+ by, (9)

parameterized with the hyperplane normalw and biasesb.
The predicted classy for a pointx is chosen to maximize
the output.

x 7→ argmax
y∈Y

fw,b(x, y). (10)

Multiclass-MKL considers a convex combination ofp ker-
nels,K(xi,xj) =

∑p

k=1
βkKk(xi,xj). Equivalently, we

consider linear combinations of the corresponding output
functions:

fw,b(x, y) =

p
∑

k=1

βk〈w,Φ(x, y)〉+ by. (11)

We aim at choosingw = (ωw)k=1,...p andβ such that
fw,b,β(xi, yi) ≥ fw,b,β(xi, u) for all u ∈ Y − {yi}. The
resulting optimization problem becomes:

min
β,w,b,ξ

1

2

p
∑

k=1

βk +
n
∑

i=1

ξi

s.t.∀i : ξi = max
u6=yi

l(fw,b,β(xi, yi)− fw,b,β(xi, u))

(12)
This problem can be solved by iteratively solvingβ with
fixedw andb through linear programming, and solvingw
andb with fixed β through a generic SVM solver such as
LIBSVM.

To train the SVMs, we employ multi-channel general-
ized Gaussian kernels with theχ2 distance, calledχ2 kernel
for short. Theχ2 kernel is defined as

K(Hi, Hj) = exp(−
1

A
χ2(Hi, Hj)), (13)

whereA is the width of the kernel, andχ2 distance be-
tween any two histogramsHi andHj is defined by:

χ2(Hi, Hj) =
1

2

(

(Hi(b)−Hj(b))
2

Hi(b) +Hj(b)

)

, (14)
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Figure 5. The flowchart of the classification scheme using contex-
tual features

whereb indexes over each of thek histogram bins.

4.2. Algorithm Summary

The overview of our algorithm is given in Fig.5. The
classification scheme we consider is a bag of words ap-
proach [6]. The interest points are extracted by Harris3D
[19]. For each interest point, we use the HOG and HOF
features as local appearance features. The K-means cluster-
ing algorithm is used to quantize these features into distinct
clusters, each of which corresponds to one feature class.
These clusters form the codebook for local features.

With these feature classes, we computedP channels the
contextual features for each interest point using the methods
described in Sec.3.2. Finally, we cluster the contextual
features for each channeli into Ni clusters. These clusters
are the codebooks for contextual features.

Based on the codebooks for local features and contex-
tual features, we project local features and each contextual
features to the closest codebook element. Then the video is
represent by theP + 1 histograms of occurrences of code-
book elements. Each histogram is called a feature channel.

To perform feature selection in these feature channels,
we use a multiclass-MKL with Gaussian-χ2 kernel for fea-
ture selection and classification.

5. Experiments

Our experiments demonstrate the effectiveness of our
proposed contextual features for action recognition in a va-
riety of categories.

We evaluate our approach on two benchmark datasets for
human activity recognition: the KTH [20] and Activity of
Daily Living (ADL) dataset [28].



Figure 6. Sample frames from the ADL dataset

5.1. Results on ADL Dataset

The ADL dataset is a high resolution video dataset with
10 different daily-living activities, such as “answering the
phone”, “peeling bananas”, and “drinking water”. These ac-
tivities are each performed three times by five different peo-
ple for a total number of 150 videos. Some sample frames
from ADL dataset are shown in Fig.6. The activities in this
dataset are very similar in appearance, thus they are diffi-
cult to be categorized with any single source of information.
We will show that the method using our contextual features
achieves good performance.

We extract sparse Harris3D points for ADL using the
code kindly provided by the authors of [19] with the de-
fault parameter setting, and compute Histogram of Gradi-
ent (HOG) and Histogram of Flow (HOF) features for each
interest point (due to the limitation of the STIP extractor bi-
nary code, the videos are subsampled to400 × 300). The
HOG and HOF features are concatenated to form the local
features for each interest point. The size of the codebook
for appearance features is fixed as 4000. For contextual fea-
ture, we useWx,Wy,Wz = (1, 2, 2), (1, 1, 2), (1, 2, 1) and
(1, 3, 3), with cuboid-size(40, 40, 20). NoticeWx is fixed
to be1 because the horizontal arrangement of interest points
does not contain semantic information, as the actions in this
dataset can often be interchanged from left-to-right. Each
channel of the contextual features is clustered into 1000
classes. For multiclass-MKL, we use the Shogun machine
learning toolbox [15]. The penalty parameter is selected by
the leave-one-person-out cross-validation.

We achieve average accuracy of 96% with multiple ker-
nel learning on the feature channels. This is a very signifi-
cant improvement to the accuracy compared to the previous
work. We also find that learning best kernel combination

Method Accuracy
Messing,et al.[28] 89%
Banabbas,et al. [2] 81%

Raptis,et al.[31] 82.67%
Matikainen,et al. [27] 70%

Satkin,et al. [33] 80%
STIP interest point 85%

Average among all kernels 94%
Multiple kernel learning 96%

Table 1. Performance comparison on ADL dataset with reference
methods
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Figure 7. The confusion matrix for ADL dataset

with MKL is better than simply averaging over all the ker-
nels. Table1 compare our results to those from previous
work. The confusion matrix is shown in Fig.7. The confu-
sion usually occurs between actions in which the same ob-
ject exists, such as “answering phone” and “dial the phone”.

To demonstrate the discriminative power of contextual
features, we consider two frames extracted from one “eat-
ing snack” video and one “eating bananas” video, which
are illustrated in the first row of Fig.8. The yellow circles
in Fig. 8 indicate the location of interest points (one pic-
ture shows interest points in five consecutive frames). The
second and the third row plot the local appearance and con-
textual feature histogram, respectively. In this case, thelo-
cal appearance feature histograms are very similar (the sum
squared distance between two histograms are 0.2), because
interest points in both videos have similar appearance and
motion. But their contextual features are quite different,be-
cause each of these interest points interacts with different
objects. As a result, in some cases, incorporating the con-
textual feature into classification increases the accuracyof
the classification.

5.2. Results on KTH Dataset

The KTH dataset is chosen because of its popularity, al-
though there is not much human-object interaction in this
dataset. It contains six action classes, each of which is per-
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Figure 8. The comparison of local features and contextual features.
The top row shows some raw video frames with interest point loca-
tions indicated by yellow circles. The second row shows the local
feature histogram of the corresponding interest points. The third
row contains the contextual feature histogram. In this case, the
two local feature histograms are very similar, but their contextual
feature histograms are different.

formed in four different scenarios by 25 subjects, resulting
in a total of 599 video clips. We follow the split suggested
in [20] to split them into 2400 video sequences. Despite
uncluttered static background and simplicity of the actions,
KTH dataset is relatively difficult because some categories
in this dataset are too similar, such as “running” and “jog-
ging”.

We choose the same experiments parameter as that in
Sec. 5.1. With this setting, we achieve average recogni-
tion accuracy of 92.0% without using contextual features,
which is comparable to the results in [20], and 93.8% ac-
curacy is obtained with the help of the contextual features.
Table2 compare our results to those from previous work.
The performance of our algorithm is comparable to that of
the state of art algorithms. Fig.9 illustrates the confusion
matrix for KTH dataset. It can be observed from the confu-
sion matrix that our error mainly concentrates in classifying
“jogging” and “running”. These actions are very difficult
to classify even for human beings, and do not contain many

Method Accuracy
Fathiet al. [9] 90.5%

Gilbertet al. [12] 89.92%
Lin et al. [23] 95.0%
Chenet al. [5] 93.4%

Niebleset al. [29] 81.5%
Bregonzioet al. [3] 93.17%
Laptevet al. [20] 91.8%

Kovashkaet al. [17] 94.53%
Contextual feature 93.8%

Table 2. Performance comparison on KTH dataset with reference
methods
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Figure 9. The confusion matrix for KTH dataset

interactions. For other categories, we get better or compa-
rable results.

6. Conclusions and Future Work

We have presented a new type of spatio-temporal con-
textual feature, based on the density of all features ob-
served in each interest point’s spatio-temporal contextual
domains. This feature has been validated on two realistic
datasets. Our experiments demonstrate the superior perfor-
mance over the state of art algorithms. In our future work,
we intend to develop more efficient learning algorithm to
combine the information from different feature channels
other than linear combination, and to evaluate our frame-
work using different types of interest point detector and lo-
cal features.
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