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Abstract Interest point
detection
Lo}

The popular bag of words approach for action recogni-
tionis based on the classifying quantized local features de
sity. This approach focuses excessively on the local festur
but discards all information about the interactions among
them. Local features themselves may not be discriminative Feature extraction
enough, but combined with their contexts, they can be very
useful for the recognition of some actions. In this paper,
we present a novel representation that captures contextual 74 appearance features
interactions between interest points, based on the densit
of all features observed in each interest point’s mutliscal

Contextual features

spatio-temporal contextual domain. We demonstrate that e
augmenting local features with our contextual feature sig- AR SN A P
nificantly improves the recognition performance. .
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1. Introduction

Action recognition and categorization in video have re-
ceived great attention because of its difficulty and poédnti [ Appearance o
2 : . . : Contextual densities
applications. It can be used in human-computer interface,| density

video surveillance, video indexing, and many other areas.

Recently, various approaches have been proposed and ma
progresses have been achieved. However, it still remains
challenging problem due to several fundamental difficaltie

The first difficulty arises from the tremendous intra-
pattern variations in human actions. The same type of ac-
tion can have huge differences in their visual appearance,
variations in performing speed, clothing, and viewpoints.

The spatio-temporal nature of the data also adds to the‘
complexity. Modeling spatio-temporal dependencies for 3D
video data poses a big challenge. To simplify the task, Figure 1. A schematic framework of spatio-temporal contakt
researchers usually resort to schemes that assume condjgature
tional independence across spatial and temporal domains
such as the bag of words method, which summarizes a
video by the histogram of feature occurrences. Recently,are robust to viewpoint and scale changes, simple to imple-
many bag of words methods using local spatio-temporal de-ment, and have achieved promising results.
scriptors have been proposed for action recognition tasks However, the bag of words methods have their limita-
[20, 12, 16, 5, 19, 9]. Such descriptors are useful in repre- tions. One important limitation is that they largely ignore
senting the local appearance of the 3D salient points. Theythe spatio-temporal relationship among the local appear-
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ance features, such as temporal order of the action, spatial

arrangement of objects, and motion trajectories. For exam-
ple, in Fig.2, the actions in the left and right video volumes

are considered the same in the bag of words method. How-

ever, the semantic meaning of these two actions may be dif-
ferent due to the spatio-temporal configuration difference
In order to solve this problem, we introduce a novel contex-
tual feature to incorporate the spatio-temporal deperidenc
into the bag of words model.

The termcontextis widely used in object recognition

jects. In the action categorization field, the context usu-
ally refers to the information about typical configurations
of objects in a scene. It can be either global or local. The
global context usually exploits scene configuration as an
extra source of global information across categori&g. [

or regions 6, 21]. Both of those contextual features have
proved to be beneficial to action recognition tasks, but most
of the existing contextual features tend to be complicated.
We consider the problem of designing simple but dis-
criminative local contextual descriptors in this papera-Tr
ditional contextual features either use object detectich [
or segmentation]1] as preprocessing, or require complex
learning methods such as AdaBoos} ¢r discriminative
configuration mining17]. Although these approaches have
achieved good recognition results, they have two short-
comings.
consuming. Second, because the object recognition and m

Figure 2. Two spatio-temporal video volumes with interesinfs
area. Contextual information can be very important for ac- in them. The color of the points represents the feature etass
tion recognition, because an action is characterized by thesimple bag of words approach will consider both volumes to be
interaction between human parts or between human and obldentical as it does not consider the spatio-temporal cordtgpn.

But the two volumes may express different actions.

in Fig. 1.

The novelty of this paper includes the following aspects:

Local context captures the local arrangement of the objects(l) It augments local appearance featureg W'th. contexial
method as features that represent the relationship ameng th

3D salient points. (2) It utilizes an efficient classificatio
method to integrate contextual features with local feaure

We apply our approach to learn human action categories
on the KTH [37] and the ADL €] datasets, and show that
the proposed method which includes contextual features is
able to outperform some state of the art methods.

After a brief review of the related work in S&cthe de-
scription of the contextual feature is given in Sex. We
introduce our classification framework that integratesloc

appearance feature and contextual features.. The experi-

First, these processing procedures are tlme'mental results are reported in Se6. Sec. 6 concludes

; ‘ ; Gihis paper.
chine leaning procedures are error-prone, especially when

the data is noisy, using these procedures may add noise t
the results. . Related Work

This paper presents a new approach to incorporating con- ~ Action recognition is an important topic in computer
texts into action recognition. In the proposed contextual vision field. Researchers have proposed many different
model, there are some feature classes, each of which is askinds of approaches to solve this problem. One type of
sociated with an individual context. One individual con- approaches uses motion trajectories to represent actions
text for one pixel is represented by the posterior density of [34, 31, 18, 2¢], and requires target or feature tracking. An-
this particular feature class at this pixel location, based  other type of approaches uses sequences of silhouettes or
the density of all features observed in its multiscale spati  body contours to model action&d, 30, 24, 23], and this
temporal contextual domains. Its total context is the col- type of methods require background subtraction. Recently,
lection of these individual ones. As this density is able to action categorization method that uses local spatio-teaipo
reflect the change in the action-object interaction, contex features has drawn a lot of attention, because of its robust-
tual features exhibit more discriminative power compared ness to viewpoint and scale change, as well as superior per-
to traditional local appearance features. formance P0, 13, 16,5, 19, 34].

In our approach, we extract spatio-temporal extrema The context information can be used to help object
points as interest points. Multiple channels of contextual and action recognition problem. 1]] gives a compre-
features are generated for each interest point. For compuhensive review of the contextual features and machine
tational efficiency and performance consideration, midtip learning models that integrate contextual informatiom int
kernel learning is used to select the best combination ofobject recognition frameworks. Previous contextual fea-
channels in a multi-channel SVM classification. An illus- tures in action recognition include the scene information
tration of the framework of the proposed method is shown [25, 27], spatio-temporal relationship between trajectories



[34], neighborhood-based feature], spatial visual feature  flow (HOF) features {], which characterize the local ap-

arrangementi6] and object-level interaction characterized pearance (including visual appearance and motion appear-

by graphical modelsl[o, 37, 14]. ance) of the interest points. These features are calledl loca
Different from those approaches, our method representsfeatures in this paper.

the contextual information as spatio-temporal statisitics The local features are clustered ind classes by k-

the 3D neighborhood of each interest point. Other recentmeans algorithm. Th& centers of these clusters are called

work also used feature-centered approaghlLf], but em- visual words. Each local feature can be mapped into a vi-

ployed different representations13 uses co-occurrence sual word.

transaction to describe context feature, which may suffer

from the loss of information. g uses AdaBoost to learn  3-2. Contextual Features

a classifier in each interest point’s local region, and uses

classificgtion score as contextual featuré./] [repre_sents [u,v,t], whereu, v and? are its horizontal, vertical and
the relationship between local features as the distribudfo o010 coordinates. The point is associated with a local
qugntlzed location difference between each pair of interes ...\ vectorf(z) € R in a feature space. The feature
points. . . o space has been quantized to a finite séY afiscrete feature
Some work in object recognition is related to our pro- classes(w, .. .,wy}, each of which is represented by its
po_sed work as weII._ In_]]], ;hape context qt_the re_present local appearance visual word.
point captures the Q|str|but|on of the remaining pointa-rel A point is not isolated but surrounded by its spatial and
tive to it, thus offering a globally discriminative charact temporal context. In our approach, multiscale channels

ization. In [, Iocgl feature statistics is used FO compute of contextual features are computed. Different channels of
more accurate o_ptlcal flow. IrS_B], a self-supervised clus- contextual features are computed within cuboids that are
terln_g algont_hm is proposed with the help of local contex- of different sizes and shapes. We aim to capture various
tual information. types of interactions by using multiple channels of contex-
tual features. For example, contextual domains with short
spatial support and long temporal support can capture tem-
We propose to capture local contextual information by poral evolution information.
spatio-temporal statistics. Given a video sequence, we firs  For example, as shown in Fig3, we have three chan-
extract spatio-temporal interest poifts,,--- ,xp}, then nels of contextual features. These contextual features hav
accumulate the local features around each interest point'scontextual domains with different shapes, and can capture
spatio-temporal contextual domain, and obtain differete s different types of contextual information.
of contextual feature®l = {H;(x),... Hy(x)}. For each channel of contextual features, a regular grid is
In the following, we give a detailed description of our used to encode spatio-temporal information within the lo-
approach. We start with the spatio-temporal interest goint cal neighborhood of an interest point. Each cuboid in this
extraction. regular grid defines a contextual domain. The context for
feature class; in thejth contextual domain is defined as

Consider a spatiotemporal point that is located:at

3. Contextual Feature Model

3.1. Spatio-temporal Interest Points

Spatio-temporal features have shown good performance Cij = {ylf(y) € wi,y € Q(x)} (2)
for action recognitiorf(J. They provide a compact rep- o . _
resentation for video, and achieve robustness againat intr Wherer($_) Is jth_ Spatlo-_tempprlall contextual doma|.na.o.f
class variations. To detect an interest point, we use the Har With predefined size. This definition follows the definition
ris3D corner detector?[], which is an extension of the 2D iN [39]. . _ .

Harris corner. MatriX is defined as: The total context irjth contextual domaif;(x) is the

union of all individual context inside it,e.
L? L,L, L,L;
U= |L,L, Li L,L, (1)

-

1

3

where L,, L, and L, are the gradients of Gaussian-
smoothed video in horizontal, vertical and temporal direc-  Because we are interested in the spatio-temporal config-
tion. The Harris3D corner detector finds points wh&&e uration of the interest points. To represent the interactio
has large eigenvalues. Those points are generally extremaround pointz, we use each feature class’s posterior den-
points in the spatio-temporal space. sity atx: p(w;|x). We have:

For each interest point, we extract the histogram-of-
oriented-gradients (HOG)7] and histogram-of-optical- p(wi|x) = p(x|w;)p(w;) (4)
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Figure 4. A simple contextual feature example with, =
1,W, = 1,W, = 2. The left and right histograms are the
M "'/ distance-weighted probability of occupancies of eachufeatlass

in the red and yellow regions respectively. The final contakt
feature is the concatenation of these two histogram.

Figure 3. Three channels of contextual features. The puqute

textual feature channel’s contextual domains hayeandt scales, and
while the blue and green contextual feature channel’s gtuné N
domain has larger supportirandy directions, respectively. _ 10 0
g pp (1 , resp y. bij = bij/zbij' (8)
1=1

where the priop(w;) can be estimated within a contextual
domain, ang(x|w;) can be computed using the kernel den-
sity estimation:

TheselM histograms encode the probabilitigse|w;) in
all contextual domains. We concatendte histograms to
form one channel of our final contextual descriptor for a
iven pointx:{Hy(x),... Hy(x)}. With different selec-
p(@|w;, C;) = Z K(z, ) ®) t%ons (E)fWI, I/I{/y, I/E/t,) we can (otgt}ain multiple channels of
LrCCi contextual features. These contextual features chaizeter
the relationship between the interest points.
For example, iV, = 1,W, = 1, W, = 2 for a contex-
(x—xp)®  (y—un)? (t—tp)? tual feature channel, there are two contextual domains for
K(z,z)) o exp < < 52 + 52 + 52 >) an interest pointc along temporal direction, as illustrated
N Y ! 6) ~ byredand yellow cuboids; andCs in Fig.4. We accumu-
whered,, s, andd, are independent spatial and temporal late the probabilities of distance-discounted occurreifice
scale parameters. each feature class ifi; andC», and obtain two histograms
For each contextual features channel of interest pojnt ~ H1(%) andHx (). This channel of contextual feature ter
aregular grid is used to encode spatio-temporal informatio 'S {Hi(x), Hz(z)}.
about the local neighborhood of an interest point. Specifi-  In order to show the properties of our approach, we ex-
cally, each pointhad/ = W, x W, x W, cuboids around amine the behavior of our contextual features in two cases:
it. Each cuboid corresponds to a spatio-temporal contex-First, we consider two actions: “catch a ball” and “throw

whereK(.,.) is a 3D Gaussian kernel:

tual domain(2;. The contextual feature contaidd N- a ball”. The contextual features for those two actions are
dimensional histogram vectdrH(x), ... Hy(x)}. Ev- different if W; > 1, because the two actions have differ-
ery histogramH;(x) = {b;,---,by;} accumulates the ent temporal directions. Second, the “playing high bar” and
probability of distance-weighted occupancies of each fea-“ walking” have similar local motion, but can be discrimi-
ture classu; within a given contextual domaine., nated by contextual features witli,, > 1, as these actions
have different spatial orientations. In conclusion, oun-co
b?j — Z K(x, ) (7) textual feature is descriptive of the spatio-temporalrente

X eCy tions of objects or features.



4. Integrating Contextual Features

4.1. Multiclass Multiple Kernel Learning

The channels of contextual features essentially share

some information with each other. Training with all these

features is computationally expensive. Thus, we use a lin-

ear combination of these features for efficiency. To opti-

mize the combination of the features is a feature selection

problem. Multiple kernel learning (MKL)4] has proved
to be a very good way of optimizing kernel weights while
training a SVM. Since in our application, more than two
classes are to be distinguished, the multiclass multipie ke
nel learningf:(] is used.

A common approach to multiclass classification is the
use of joint feature ma@(x, y) on dataX’ and labelsy
together with a linear output function

fwb(mvy) = <waq)(may)> +bya (9)

parameterized with the hyperplane norraabnd biase$.
The predicted clasg for a pointx is chosen to maximize
the output.

. 10
@ > arg max fwp(@,y) (10)

Multiclass-MKL considers a convex combinationyoker-
nels, K (z;,x;) = > v_, BuKk(x;, z;). Equivalently, we
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Figure 5. The flowchart of the classification scheme usingecen
tual features

whereb indexes over each of thehistogram bins.

4.2. Algorithm Summary

The overview of our algorithm is given in Figh. The
classification scheme we consider is a bag of words ap-

consider linear combinations of the corresponding output Proach f. The interest points are extracted by Harris3D

functions:
p

fw7b(ma y) - Zﬂk<wv (I)(mvy» + by

k=1

(11)

We aim at choosingv = (wy),—, _, andg such that
fw,bﬂ(xivyi) > fw,bﬂ(xivm forallu € Y — {y;}. The
resulting optimization problem becomes:

1 <& -
min — i
Jmin 5 ;ﬁk + ;E
(12)

This problem can be solved by iteratively solviggwith
fixed w andb through linear programming, and solving
andb with fixed 3 through a generic SVM solver such as
LIBSVM.

To train the SVMs, we employ multi-channel general-
ized Gaussian kernels with thé distance, calleg? kernel
for short. They? kernel is defined as

K(H,, Hy) = exp(~ (i, Hy), (19)

where A is the width of the kernel, angs distance be-
tween any two histogramd; andH; is defined by:

- <<Hz-<b> (b >2>, (14)

2 7H]
xX°(H;, Hj) H;(b) + H, (b)

[19). For each interest point, we use the HOG and HOF
features as local appearance features. The K-means eluster
ing algorithm is used to quantize these features into dittin
clusters, each of which corresponds to one feature class.
These clusters form the codebook for local features.

With these feature classes, we compukedhannels the
contextual features for each interest point using the nustho
described in Sec.3.2. Finally, we cluster the contextual
features for each channgeinto N; clusters. These clusters
are the codebooks for contextual features.

Based on the codebooks for local features and contex-
tual features, we project local features and each contextua
features to the closest codebook element. Then the video is
represent by thé + 1 histograms of occurrences of code-
book elements. Each histogram is called a feature channel.

To perform feature selection in these feature channels,
we use a multiclass-MKL with Gaussiayt-kernel for fea-
ture selection and classification.

5. Experiments

Our experiments demonstrate the effectiveness of our
proposed contextual features for action recognition in-a va
riety of categories.

We evaluate our approach on two benchmark datasets for
human activity recognition: the KTH?[]] and Activity of
Daily Living (ADL) dataset pPd].



Method Accuracy
Messinget al[2]] 89%
Banabbasgt al. [2] 81%

Raptis,et al[31] 82.67%
Matikainen,et al. [27] 70%
Satkin,et al. [39] 80%
STIP interest point 85%
Average among all kernels  94%
Multiple kernel learning 96%

Table 1. Performance comparison on ADL dataset with referen
methods

Figure 6. Sample frames from the ADL dataset

5.1. Results on ADL Dataset

The ADL dataset is a high resolution video dataset with
10 different daily-living activities, such as “answerirtgt
phone”, “peeling bananas”, and “drinking water”. These ac-
tivities are each performed three times by five differentpeo
ple for a total number of 150 videos. Some sample frames
from ADL dataset are shown in Fi§. The activities in this
dataset are very similar in appearance, thus they are diffi-with MKL is better than simply averaging over all the ker-
cultto be categorized with any single source of information nels. Tablel compare our results to those from previous
We will show that the method using our contextual features work. The confusion matrix is shown in Fig. The confu-

Figure 7. The confusion matrix for ADL dataset

achieves good performance. sion usually occurs between actions in which the same ob-
We extract sparse Harris3D points for ADL using the jectexists, such as “answering phone” and “dial the phone”.
code kindly provided by the authors ofq] with the de- To demonstrate the discriminative power of contextual

fault parameter setting, and compute Histogram of Gradi- features, we consider two frames extracted from one “eat-
ent (HOG) and Histogram of Flow (HOF) features for each ing snack” video and one “eating bananas” video, which
interest point (due to the limitation of the STIP extractor b~ are illustrated in the first row of Fig8. The yellow circles
nary code, the videos are subsampled® x 300). The in Fig. 8 indicate the location of interest points (one pic-
HOG and HOF features are concatenated to form the localture shows interest points in five consecutive frames). The
features for each interest point. The size of the codebooksecond and the third row plot the local appearance and con-
for appearance features is fixed as 4000. For contextual featextual feature histogram, respectively. In this caseldhe
ture, we usév,,, W, W, = (1,2,2),(1,1,2),(1,2,1) and cal appearance feature histograms are very similar (the sum
(1,3, 3), with cuboid-size(40, 40, 20). Notice W, is fixed squared distance between two histograms are 0.2), because
to bel because the horizontal arrangement of interest pointsinterest points in both videos have similar appearance and
does not contain semantic information, as the actions & thi motion. But their contextual features are quite differéet,
dataset can often be interchanged from left-to-right. Eachcause each of these interest points interacts with differen
channel of the contextual features is clustered into 10000bjects. As a result, in some cases, incorporating the con-
classes. For multiclass-MKL, we use the Shogun machinetextual feature into classification increases the accuoécy
learning toolbox [ 5]. The penalty parameter is selected by the classification.
the leave-one-person-out cross-validation.

We achieve average accuracy of 96% with multiple ker- 5.2. Results on KTH Dataset
nel learning on the feature channels. This is a very signifi-  The KTH dataset is chosen because of its popularity, al-
cantimprovementto the accuracy compared to the previoughough there is not much human-object interaction in this
work. We also find that learning best kernel combination dataset. It contains six action classes, each of which is per



Method Accuracy

Fathiet al.[9] 90.5%
Gilbertetal.[17] 89.92%
Linetal.[23] 95.0%
Chenet al. [5] 93.4%

Niebleset al. [29] 81.5%
Bregonziocetal.[3] | 93.17%
Laptevet al. [20] 91.8%
Kovashkaet al.[17] | 94.53%
Contextual feature| 93.8%

w Table 2. Performance comparison on KTH dataset with reéeren
o methods
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Figure 8. The comparison of local features and contextaalfes. Figure 9. The confusion matrix for KTH dataset
The top row shows some raw video frames with interest pog#-lo
tions indicated by yellow circles. The second row shows tieall
feature histogram of the corresponding interest pointse fhiird
row contains the contextual feature histogram. In this ctse
two local feature histograms are very similar, but theirtegtual
feature histograms are different.

g
g

interactions. For other categories, we get better or compa-
rable results.

6. Conclusions and Future Work

formed in four different scenarios by 25 subjects, resgltin
in a total of 599 video clips. We follow the split suggested
in [20] to split them into 2400 video sequences. Despite
uncluttered static background and simplicity of the action
KTH dataset is relatively difficult because some categories
in this dataset are too similar, such as “running” and “jog-

We have presented a new type of spatio-temporal con-
textual feature, based on the density of all features ob-
served in each interest point’s spatio-temporal contéxtua
domains. This feature has been validated on two realistic
datasets. Our experiments demonstrate the superior perfor
mance over the state of art algorithms. In our future work,

ging-. we intend to develop more efficient learning algorithm to

We choose the same experiments parameter as that i, mnine the information from different feature channels
Sec. 5.1 With this setting, we achieve average recogni- ooy than linear combination, and to evaluate our frame-

tion accuracy of 92.0% without using contextual features, \ o ysing different types of interest point detector and o
which is comparable to the results inC], and 93.8% ac- ., teatures

curacy is obtained with the help of the contextual features.

Table 2 compare our results to those from previous work.

The performance of our algorithm is comparable to that of 7, Acknowledgements

the state of art algorithms. Fi@ illustrates the confusion

matrix for KTH dataset. It can be observed from the confu-  This work was supported in part by National Science
sion matrix that our error mainly concentrates in clasaifyi  Foundation grant [1S-0347877, 11S-0916607, and US Army
“jogging” and “running”. These actions are very difficult Research Laboratory and the US Army Research Office un-
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