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1. Details of the Network Architecture
In this section, we will give the details of the network ar-

chitecture of the proposed deep ranking model. The triplet-
based network architecture for the ranking loss function is
illustrated in Fig. 2 and Fig. 3 in the main paper. We will
give detailed descriptions of the layers used in the architec-
ture.

We have a ranking layer on the top of the network, which
takes the embeddings of the three images in a triplet and
computes the hinge ranking loss of the triplet:

l(pi, p
+
i , p

−
i ) = max{0, g+‖f(pi)−f(p+i )‖

2
2−‖f(pi)−f(p−i )‖

2
2}

(1)
where g is a gap parameter that regularizes the gap between
the distance of two image pairs: (pi, p

+
i ) and (pi, p

−
i ). The

hinge loss is a convex approximation to the 0-1 ranking er-
ror loss, which measures the model’s violation of the rank-
ing order specified in the triplet.

When the embeddings of the images are normalized to
have unit l2 norm, the hinge loss function (1) can be simpli-
fied to

l(pi, p
+
i , p

−
i ) = max{0, g − 2f(pi)(p

+
i ) + 2f(pi)f(p−i )}

(2)
The ranking layer does not have any parameter. During
learning, it evaluates the the model’s violation of the rank-
ing order, and back-propagates the gradients to the lower
layers so that the lower layers can adjust their parameters to
minimize the ranking loss.

The l2 normalization layer normalize the features to
have unit l2-norm:

xl =
xl−1

‖xl−1‖2
(3)

where xl is the concatenation of all the output feature maps
of the l-th layer. This layer does not have any parameter.

The network architecture of the ConvNet in [4] is shown
in Fig. 2.

The convolutional layer, subsampling layer and local
normalization layer all take overlapping blocks from the
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Figure 1. An illustration of convolution with kernel size 4 × 4
and stride 2 × 2. The red, blue and green rectangles are the three
adjacent blocks for the convolution.

feature maps of the previous layer as input. The blocks are
slid around its center with a given stride in the feature maps
of the previous layer. For example, In convolution, the ker-
nel is applied to the image by placing the kernel over the
image to be convolved and sliding it around to center with
a given stride size in the feature maps of the previous layer.
At each placement the numbers (pixel values) from the fea-
ture maps of the previous layer are multiplied by the kernel
number that is currently aligned above it. An example of
convolution with kernel size 4× 4 and stride 2× 2 is shown
in Fig. 1.

At a convolutional layer, the previous layer’s feature
maps are convolved with learnable kernels and put through
the activation function to form the output feature map. Each
output map may combine convolutions with multiple input
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maps. In general, we have

xl
j = a

∑
i∈Mj

xl−1
i ⊗ klij + blj

 (4)

where xl
j is the j-th feature map of the l-th layer, ⊗ is con-

volution, Mj represents a selection of input maps, and a(.)
is an activation function, such as sigmoid function and rec-
tified linear function. In this paper, we use all the feature
maps from the previous layers in a convolutional layer, and
we employ rectified linear function as activation function.
A convolutional layer can be viewed as a set of local fea-
ture detector. The parameters of this layer are the kernels
klij and offsets blj .

The subsampling layer produces downsampled versions
of the input maps. If there areN input maps, then there will
be exactly N output maps. More formally,

xl
j = down(xl−1

j ) (5)

where down(.) represents a subsampling function. It takes
the average or maximum over each overlapping block in the
input feature map. The subsampling layer is called a max
pooling layer if “maximum” is used in this layer. This layer
does not have any parameter.

The local normalization layer locally normalizes the fea-
ture maps to have zero mean and unit norm, so that they are
robust to contrast and illumination changes. The function is
defined as:

xl
j,i =

xl−1
j,i − x̄

l−1
j,i

norm(xl−1
j,i − x̄

l−1
j,i )

(6)

where xl
j,i is j-th feature map at location i for l-th layer.

x̄l−1
j,i is the mean value of the j-th feature map values for

l-th layer in the overlapping block around the location i.
norm(xl−1

j,i ) is the l2-norm of the features map values of
the j-th feature maps for l-th layer in the overlapping block
around the location i. This layer does not have any parame-
ter.

2. Details of the Optimization
The objective function of the proposed deep ranking neu-

ral network is:

min
∑
i

ξi + λ‖W ‖22

s.t. : max{0, g +D(f(pi), f(p+i ))−D(f(pi), f(p−i ))} ≤ ξi
∀pi, p+i , p

−
i for r(pi, p+i ) > r(pi, p

−
i )

(7)
This objective can be converted to unconstrained optimiza-
tion by replacing ξi = max{0, g + D(f(pi), f(p+i )) −
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Figure 2. The ConvNet structure in [4]. The number shown next
to the arrow is the size of the output image or feature. The number
shown at the left side of the box is the size of the kernel and the
size of the stride for the corresponding layer.
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D(f(pi), f(p−i ))}:

min
∑
i

max{0, g +D(f(pi), f(p+i ))−D(f(pi), f(p−i ))}

+ λ‖W ‖22
∀pi, p+i , p

−
i for r(pi, p+i ) > r(pi, p

−
i )

(8)
where f(.) is the function of the image embedding deep
neural network, which can be represented as a composition:

f(.) = gn(gn−1(gn−2(· · · g1(.) · · · ))) (9)

where gl(.) is the forward transfer function of the l-th layer.
The parameters of layer function gl is denoted as wl. Then
the gradient ∂f(.)

∂wl
can be represented as: ∂f(.)

∂gl
× ∂gl

∂wl
,

and ∂f(.)
∂gl

can be efficiently computed in an iterative way:
∂f(.)
∂gl+1

× ∂gl+1(.)
∂gl

. Thus, we only need to compute the gradi-

ents ∂gl
∂wl

and ∂gl
∂gl−1

for the function gl(.)
The ranking layer does not have any parameters. The

gradients of the ranking layer loss (2) with respect to the
image embedding inputs f(pi), f(p+i ), f(p−i ) are

∂l

∂f(pi)
=

{
0 l = 0

−2
(
f(p−i )− f(p+i )

)
l > 0

(10)

∂l

∂f(p+i )
=

{
0 l = 0

−2f(pi) l > 0
(11)

∂l

∂f(p−i )
=

{
0 l = 0

2f(pi) l > 0
(12)

The back-propagates algorithm adjusts f(.) so that the dis-
tance of f(pi) and f(p+i ) is small, and the distane of f(pi)
and f(p−i ) is large.

To compute the gradient convolution layers. Denote the

gradient of the activation function a(δlj) as
∂a(δl

j)

∂δl

j

, and the

u, v element of xl
j and δlj as Eu,v and (δlj)uv , respectively.

The the gradients of each transfer function Eu,v of the con-
volution layers with respect to the parameters klij , b

l
j are:

∂Eu,v

∂blj
=

∂a(δlj)

∂(δlj)uv
(13)

∂Eu,v

∂klij
=

∂a(δlj)

∂(δlj)uv
.(pl−1i )uv (14)

where (pl−1i )uv is the patch that was multiplied element-
wise by klij during the convolution in order to compute the
element at (u, v) in the output convolution map xl

j .

The the gradient of each transfer function Eu,v of the
convolution layers with respect to the input xl−1

ij are:

∂Eu,v

∂xl−1
ij

=
∂a(δlj)

∂(δlj)uv
.(klij)

∗ (15)

where (klij)
∗ are the kernel elements that are used to multi-

ple xl−1
ij to crate the element at (u, v) in the output convo-

lution map xl
j .

The subsampling layer does not have any parameters.
The gradients with respect to the input xl−1

ij can be com-
puted as:

∂Euv

∂(xl−1
ij )u′v′

=
∂down(xij)

∂(xl−1
ij )u′v′

If (xl−1
ij )u′v′ is used to generate (u, v) in output xl

j

0 Otherwise
(16)

Since local normalization layer and l2 normalization
layer do not have any parameters, we just need to unnor-
malize the gradients from the top layer back accordingly.

3. Details of Triplet Sampling
The details of the algorithm can be found in Alg. 1.

Readers can refer to [2] for proof of the correctness of this
algorithm.

4. Details of the Hand-Crafted Visual Features
The details of the hand-crafted features are listed below:
• Wavelet: The implementation follows [3], which com-

putes weighted L0 distance between Harr wavelet de-
compositions of image pairs.
• Color: The best color-based metric uses normalized L1

distance between color histograms in LAB space with
a bin size of 4096 (16 × 16 × 16). We have also tried
color histograms in HSV and RGB space and found
them to be inferior.
• SIFT [6]-like features are Gabor wavelet texture fea-

tures on local image patches. Such features are vector-
quantized and accumulated across the image to pro-
duce histograms. Similarity between histograms are
given by their normalized L1 distance. We have tried
histograms of 128, 512 and 2048 bins. Performance
peaks at 2048 bins.
• SIFT-like Fisher (SF): We followed [7] to compute

Fisher vectors from the SIFT-like features as follows:
First, we assume the SIFT-like features are generated
i.i.d from a Gaussian Mixture Model (GMM) and es-
timate the parameters of the GMM; Then we compute

3
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1 Given a set of images P with category label cj , total
relevance score rj , and pairwise relevance score ri,j .

2 Initialize the minimum key in all each buffer Ml = 1.
for each image pj ∈ P do

3 Compute the key kj = u
(1/rj)
j , where

ui = uniform(0, 1).
4 Find the buffer correspond to the category cj .
5 if buffer cj is not full then
6 Insert the image pj into the buffer with key kj .
7 Update minimum key for buffer cj .
8 else
9 if kj > Mcj then

10 Replace image that has minimum key in
buffer cj with pj .

11 Update minimum key for buffer cj .
12 end
13 end
14 while no triplet is accepted and the number of

tries is less than limit do
15 Uniformly sample a query image sample pi

from the buffer cj .
16 Uniformly sample a positive image sample p+i

from the buffer cj , accept it with probability
min(1, ri,i+/ri+).

17 if Sample in-class samples then
18 Uniformly sample a query image sample

p−i from the buffer cj , accept it with
probability min(1, ri,i−/ri−).

19 else
20 Uniformly sample a negative image

sample p−i from all the images in the other
buffers.

21 end
22 Accept the triplet if the margin criteria is

satisfied.
23 end
24 end

Algorithm 1: Online triplet sampling algorithm.

gradient of the features with respect to the parameters
of the GMM; Finally, we whiten the gradient to pro-
duce the Fisher vector. Similarity between Fisher vec-
tors are judged by their normalized L2 distance. We
tried histograms of 128, 512 and 2048 bins. The best
performing SIFT-like Fisher vectors use 128 bins.

• Histogram of Oriented Gradients (HOG): A similar
implementation to [1] is used. We first resize each im-
age to a desired size (96 x 96), then divide each image
into cells (e.g. with cell size 16 x 16). The histogram of
oriented gradients features are extracted for each cell,
with 32 floats for each cell. Descriptors from differ-

ent cells are then combined. For image similarity, L1
distance can be computed between two images (L1 dis-
tance is found to out-perform norm L1 distance for this
application).
• SPMK Texton features with max pooling: Spatial

Pyramid Matching Kernel (SPMK) is a way to aggre-
gate features from coarse to fine spatial scales [5, 8].
For each image, 3 x 3 Texon is first extracted, with
a dictionary size of 1024. Spatial Pyramid Matching
Kernel is then used to aggregate the texton histogram.

5. More Ranking Examples
More ranking examples of the ConvNet, OASIS feature

(L1HashKPCA features with OASIS learning) and Deep
Ranking are shown in Fig. 3 and Fig. 4.
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Figure 3. Comparison of the ranking samples of ConvNet, OASIS
feature and Deep Ranking.
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Figure 4. Comparison of the ranking samples of ConvNet, OASIS
feature and Deep Ranking.
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