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Abstract—This paper proposes a iterative robust algorithm
for the registration of digital angiography images. The registra-
tion is iteratively refined with the extracted vessel information
and the SSIM index is employed as similarity measure. The
experimental results show that proposed algorithm yields good
global and local registration, and SSIM index outperforms MI
as a similarity measure in the DSA image registration.
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I. INTRODUCTION

In modern clinical practices, it is a common practice to
use digital subtraction angiography (DSA) on X-ray images
to visualize blood vessels. The major problem encountered
in DSA images is the presence of motion artifacts arising
from the misalignment of successive images in the sequence
as well as the peristaltic motion of the patients . Therefore,
registration is usually performed to the mask and live images
prior to subtracting the images.

Image registration is the process of finding the geometrical
transformation that aligns the images in such a way that the
points in the two images corresponding to the same physical
region of the scene being imaged. An overview of image
registration is given in [1] in general, in [2] for medical
image analysis, and in [3] for DSA image registration. Since
the deformation of the X-ray images is highly nonlinear,
the feature-based image registration is usually employed.
Many efforts have been made to register DSA images with
the feature-based image registration technique [4]–[6]. In
these technique, correspondences between the pixels of the
mask and live images are searched first. Then a certain
warping method is applied to the mask image according to
the correspondences with respect to the live one. However
the non-rigid motion of the tissue inside the human body is
complicated and often there are global and local disparities
between the mean gray-levels of the live and mask images.
Registration of such kind of angiographic images is very
difficult, a simple rotation or shift of the misregistered image
cannot eliminate the artifacts.
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A novel registration algorithm is proposed here for DSA
images, which can be outlined as follows. Firstly, we extract
control points by sampling the interest points of live images.
Secondly, we use structural similarity (SSIM) index in [7] as
the similarity measure to find the correspondence between
two images. Thirdly, we perform correction according to
this correspondence, by warping the mask image with thin-
plate spline. Forthly, the blood vessel is extracted by sub-
tracting the live image with the registered mask image and
performing outlier object detection algorithm proposed in
[8]. Finally, the coarsely extracted blood vessel is used to
help extracting more useful control points for registration in
the next iteration.

The rest of the paper is organized as follows, In section
II, our algorithm is described in detail. Some experimental
results are shown in section III. And section IV concludes
this paper.

II. REGISTRATION ALGORITHM

The most significant difference of our algorithm from
the traditional algorithms is that our registration results
are obtained by iteratively refining the registration with
the extracted blood vessel information. Since we are only
interested with the regions near the blood vessels, the control
points are only extracted from these regions. Moreover, we
increase the patch size and decrease the search region size
at each iteration to obtain more accurate correspondence
information.

A. control points extraction

To explicitly compute the correspondence for each pixel
might be desirable but unpractical, due to the expensive
computation cost. Therefore, we merely calculate the corre-
spondences for a selected control points. The control points
can be selected manually, by taking a regular grid, or by
interest point detector. In this paper, we select the control
points by performing an interest point detector because
interest point can be more robustly matched. An overview
of interest point detectors is given in [9]. In this paper, the
Harris corner detector [10] is employed to extract control
points because of its robustness.



Moreover, since it takes too much computation cost to
match all the interest points extracted by the Harris corner
detector, we sampling the Harris corners with m×m slipping
windows to ensure only one control point in a window. The
larger m is, the smaller the number the control points. In
this paper, m is chosen to be 60 at the beginning, and is
decreased by 4 at each following iteration.

B. control point correspondence calculation

After extracting the control points, we now search the cor-
respondence points between the live and the mask images.
We employ a template-matching based technique to find the
correspondences. If a mask image point’s local patch has the
maximum similarity with the local patch of a control points
in the live image, this point is selected as the corresponding
control point. That is, for each control point x, y, we are to
find xp, yp such that:

(xp, yp) = arg max
xp,yp

S(Il(x, y), Im(xp, yp)l) (1)

Where S(., .) is a similarity measure, Im and Il are the
local patches in the mask and live image respectively. Since
the deformation between the mask and the live image is
generally small in our application, we assume that |xp − x|
and |y − yp| would not exceed n pixels shift for a certain
translation. The possible correspondence regions are exhaus-
tively searched so that the correspondence points maximize
the similarity measure between the patches in the live and
mask image. In this paper, n is chosen to be 30 at the
beginning and is decreased by 2 at each following iteration.

The SSIM index measure is utilized here to describe
the similarity of the DSA image pairs. The SSIM index is
first proposed in [7] to evaluate the image quality. Since
the human vision system is strongly specialized in learning
about the scene through extracting structural information, it
can be expected that the perceived image quality can be well
approximated by measuring structural similarity between the
images, which is exploited by SSIM to evaluate the image
quality. The SSIM of two images x and y is defined as:

S(x, y) = l(x, y).c(x, y).s(x,y) =
(
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where µx and µy are (respectively) the local sample means
of x and y, δx and δy are (respectively) the local sample
standard deviations of x and y, and δxy is the sample cross
correlation of x and y after removing their means. The items
C1, C2 and C3 are small positive constant that stabilize
each term, so that near-zero sample means, variance, or
correlations do not leads to numerical instability .

Recently, the SSIM index is suggested as a similarity mea-
sure in [11]. Because it is sensitive to structural distortion
while insensitive to nonstructural distortion. This property

is desirable because this similarity measure can identify the
local structure deformation while ignore some non-structural
changes such as intensity changes. Moreover, since image
quality measures image similarity that accords with visual
perception. Utilizing it as similarity measure can produce re-
sults that matches biological perceptual systems. Therefore,
we employ SSIM index to find the correspondence.

C. image warping by thin plate spline

The use of thin-plate spline (TPS) interpolation as a point-
based elastic registration algorithm for medical images was
first proposed by Bookstein [12]. One of the most important
attributes of thin-plate spline is its ability to decompose
a sparse transformation into a global affine transformation
and a local non-affine warping component while minimiz-
ing a bending energy based on the second derivative of
the spatial mapping. Once the corresponding points are
restricted, matching matrixes and mapping parameters can
all be achieved.

Given the control points pairs U and V , which are repre-
sented as ua : a = 1, 2, . . . , n andva, a = 1, 2, . . . , n respec-
tively. Then the energy function of the thin-plate spline can
be expressed as:

ETPS(f) =
n∑

a=1

‖ua − f(va)‖2+
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where f is the mapping function between the point set va

and ua. (1, vax, vay) and (1, uax, uay) are the homogeneous
coordinates of va and ua respectively, and λ is a regular-
ization parameter which adjust the degree of smoothness of
the TPS function. Large values of λ limit the range of non-
rigidity of the transformation. For any fixed λ, There exists
a minimizing function f(v), which can be represented as:

f(v) = v.d + φ(v).w (4)

where v is the calculated point sets, d is a 3 × 3 affine
transformation matrix, w is a n × 3 non-affine warping
coefficient matrix, φ(v) is a 1 × n vector decided by TPS
kernel. For each point of v, there exists a φa(v), which can
be defined as φa(v) = c‖v− va‖2log‖v− va‖, where c is a
constant.

When the solution of (3) is substituted into (4), the TPS
energy function becomes:

ETPS(A,W ) = ‖U − V A− φw‖2 + λtrace(WT ΦW )
(5)

where Φ is a N ×N matrix made up by φ(va).
Then, QR factorization can be used to separate the affine

and non-affine warping space.

V = [Q1Q2]
(

R
0

)
(6)



where Q1 and Q2 are orthonormal matrices. R is upper
triangular. The final solution for w and d can be written
as

w = Q2(QT
2 ΦQ2 + λIN−3)−1QT

2 U (7)

d = R−1QT
1 (U − Φw)e35 (8)

Then, using the function with the calculated parameters,
we apply this warping to each pixel of the mask image to
obtain a new registered mask image.

D. outlier object detection

The blood vessel detection is formulated as a outlier
detection problem using the algorithm proposed in [8].
However, the lighting condition of our DSA images do not
change, therefore, intensity compensation is not performed.
The influence of the outlier is defined in an additive outlier
image model. Let va and ua denote the observations, and
ra denote the outlier image to be added. The outlier image
model is then given by

ua = va + ra + εa, a = 1, . . . , m (9)

where m is the number of pixels of the image, and εa is a
Gaussian distributed additive noise. If a pixel a is a outlier
pixel ra 6= 0, otherwise, the pixel a is a inlier pixel.

In order to find the outlier, the residual ua − va is
examined. To make the measure insensitive to the variance
δ2, we consider a scaled residual ρa, which is defined by

ρa =
ua − v − a

δ
(10)

where unbiased estimate of δ2 is obtained by s2

s2 =
1

m− 2

m∑

l=1

ul − vl (11)

We set a threshold D. The samples that satisfy |pa| > D
are regarded as the possible outliers.

To remove the possible spurious outliers that form small
objects or holes in a object, morphological filtering is applied
to the possible outlier using a disc structuring element. The
applied morphological filtering is composed of opening and
then closing [13].

Since only the blood vessels are of interest, only the
regions near the blood vessels are displayed. And at the
next iteration, only the regions near the blood vessels are
registered to refine the registration results.

III. EXPERIMENTAL RESULTS

A. Evaluation of Algorithm on Simulated Data

The algorithm is first applied to simulated images, a live
image and its elastically warped versions as the correct
image. The control points are selected randomly from the
live image, which can be represented as (xi, yi), where
i = 1, 2, . . . ,K and K is the number of control points. An
uncorrelated random shift dx, dy to both x and y dimensions

Figure 1. Registration results using different similarity measures. The
top row from left to right correspond the original live image, live image
registered using MI , and live image registered using SSIM. The bottom
row. The bottom row contains the substraction image in the same order of
the top row.

Figure 2. Iterative registration results. (a) is the original subtraction of
live image from the mask image showing significant artifacts. (b)-(f) are
substraction results from iteration one to iteration five respectively.

ranging from −δ to δ is added. A new set of random
control points are thus formed, which can be written as
(xi+dxi, yi+dyi). With the generated control points, a new
simulated live image is produced by thin-plate spline. The
left bottom image in Fig 1 illustrate the direct subtraction of
the two images. One can find that a great deal of artifacts
exist in figure. Then these two images are registered with
mutual information (MI) and SSIM as similarity measure
respectively. Fig. 1 illustrate the registration results of a live
image using MI and SSIM as similarity measure. It can be
observed that image is better registered with SSIM index.

Moreover, we evaluate the registration performance by
calculating the RMSE between the registered image and



Data sets No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8
RMSE using SSIM 2.3037 2.4956 2.1117 2.4365 3.1938 3.2432 2.7182 2.5329

RMSE using MI 3.9968 4.3434 3.0851 3.2851 4.8936 4.7780 4.2132 4.3354

Table I
COMPARISON OF REGISTRATION RESULTS FOR DIFFERENT SIMILARITY MEASURES

the correct image. We use eight pairs of DSA images in
our experiment. The RMSE values are tabulated in Table
I. Obviously, registration using SSIM index performs better
than that using MI in terms of RMSE.

B. Experiments on Clinical Cardiac Angiographic Images

In this subsection, the registration algorithm is applied to
different clinical angiographic image data sets. The detailed
results on one of the data sets, where the registration results
of each iteration is illustrated in Fig. 2. Notice that the shown
results only show the regions near the blood vessels. It can
be observed that the registration accuracy is improved at
each iteration. Compared with the direct substraction results
before registration, the improvement is obvious.

IV. CONCLUSIONS

In this paper, a iterative robust algorithm for the regis-
tration of digital angiography images is proposed. The pro-
posed algorithm iteratively refines the registration with the
extracted vessel information and employs the SSIM index
as similarity measure. The experimental results show that
proposed algorithm yields good global and local registration,
and SSIM index outperforms MI as a similarity measure in
the DSA image registration.

Further research will focus on the exploit of the deforma-
tion prior of the tissues and implement more sophisticated
blood vessel detection algorithm.
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