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Abstract—It is understood that the Hilbert transform 

pairs of orthonormal wavelet bases can only be realized 

approximately by the scaling filters of conjugate quadrature 

filter (CQF) banks. In this paper, the approximate 

realization of the Hilbert transform pairs is first formatted 

as an optimization problem in the sense of the lp (p=1, 2, or 

infinite) norm minimization on the magnitude and phase 

conditions of the scaling filters. The CQF bank conditions 

are taken as the constraints of such an optimization problem. 

Then a bilinear programming approach with the branch and 

bound technique is employed to obtain the globally optimal 

solution of the constrained optimization problem. S ince the 

combined influences of the magnitude and phase conditions 

of the scaling filters on the approximation quality of the 

designed Hilbert transform pair are jointly and optimally 

taken into consideration, the attained solution is a better 

approximated Hilbert transform pair. Some orthogonal 

wavelet bases designed by us herein demonstrate that our 

design scheme is superior to those that have been reported in 

literatures. 

 

Index Terms—Conjugate quadrature filter (CQF), 

dual-tree complex wavelet transform (DTWT), bilinear 

programming, Hilbert transform, orthonormal wavelet 

bases 

 

I. INTRODUCTION 

It is well known that the discrete wavelet transform (DWT) is a 

powerful signal processing tool. However, it has some 

disadvantages that undermine its usage in many applications. 

For example, one of the disadvantages is that the DWT is not a 

shift-invariant transform, which is undesirable in many pattern 

recognition applications  [1]. Moreover, the poor directionality 

and lack of phase information of the DWT are also unfavorable 

in these applications. In order to overcome these disadvantages, 

Kingsbury’s complex dual-tree wavelet transform (DTWT) has 

been proposed in [2]. The complex DTWT is constructed by a 

(approximate) Hilbert pair of wavelets. It has been shown that the 

Hilbert pair construction is very crucial for making the complex 

DTWT be able to reduce the shift variance, improve the 

directionality, and provide the explicit phase information [3]. 

It has been proved in [4] that, in order to ensure the 

orthonormal wavelet bases as a Hilbert transform, its two 

lowpass conjugate quadrature filters (CQFs) should have the 

equal magnitude response and half-sample phase delay 

relationship, i.e., G()=H()e
j(/2) 

for , where G() and H() 

are the frequency responses of the two lowpass CQFs 

respectively. Therefore, designing a Hilbert pair for the complex 

DTWT is reduced to designing two lowpass CQFs whose 

frequency responses G() and H() satisfy such a relationship. 

Several schemes for designing the desirable CQFs have been 

proposed in recent years. Selesnick has presented two design 

schemes. One is based on constructing the scaling filter pairs  of 

the CQFs such that the required half-sample delay is 

approximately achieved near =0 [4]. This design scheme cannot 

guarantee the required half-sample delay at frequencies far from 

=0. Another is dependent on the design of an all-pass filter with 

an approximate constant fractional delay [5]. This scheme can 

design CQFs with good approximated half-sample delay 

property. However, the approximation quality of the designed 

CQFs is far from the optimality [6]. Tay has shown that two 

Daubechies wavelets whose length differs by four and 

vanishing moments differ by two form approximate Hilbert pairs 

[7]. He has also pointed out that the techniques based on joint 

approximation of the magnitude and phase conditions of the 

CQFs open up the possibility of constructing a much larger class 

of Hilbert pairs with better approximation quality. At the almost 

same time, Shi et. al. proposed a design scheme with separately 

optimal approximation to the magnitude and phase conditions of 

the CQFs [6]. Their scheme can design Hilbert pairs with better 

approximation but requires that the vanishing moments of the 

two CQFs differ by 1, which may be undesirable for some 

applications. Furthermore, their optimization approach is to 

locally optimize a non-convex optimization problem. As a result, 

the approximation performance of the designed Hilbert pairs 
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heavily depends on the selection of the initial starting point of 

optimization. 

Optimal filter design schemes have been widely used in 

designing both FIR and IIR filters  [8] [9]. These design schemes 

can design filters by optimizing with respect to filter coefficients 

to satisfy the desired performance requirements. However, to the 

authors’ knowledge, designing the required CQFs for DTWT 

with optimal filter design schemes has not been reported in 

literature. Here, we propose a novel approach that formats the 

construction of the equal magnitude responses and half-sample 

phase offset, G()=H()e
j(/2) 

for , as the problem to make the 

frequency response error, H()e
j(/2)

-G(), minimized. That is to 

jointly approximate the magnitude and phase conditions  of the 

two CQFs by minimizing the lp (p=1, 2, or ) norm of the 

frequency response error. Such an objective function takes the 

interaction between the magnitude and phase response 

approximations of the CQFs into consideration. Thus, better 

approximation quality for the designed wavelets as Hilbert pairs 

can be expected. The resulting optimization problem is taken as a 

bilinear optimization one, where the branch and bound 

technique in [10] is employed to achieve the global optimal 

solution. Therefore, unlike design schemes that use local 

nonlinear optimization, our design scheme always produces 

consistent results. Moreover, our design scheme does not have 

any restriction on the designed Hilbert pairs . The design 

examples demonstrate that the approximation quality of the 

designed Hilbert pairs here is superior to those that have been 

reported in literatures. These examples also indicate that the best 

approximation results are got by minimizing the  frequency 

response error’s l1 norm instead of by minimizing its l2 or l∞ norm. 

The rest of this paper is organized as follows. Section II 

provides some preliminaries. Our design scheme is described in 

Section III. Some design examples and the approximation 

performance comparison with the designed Hilbert pairs in 

literatures are given in Section IV. Section V concludes this 

paper. 

II. PRELIMINARY 

A. Orthonormal Compactly Supported Wavelet Bases 

Let the filters h0(n) and h1(n) represent a CQF pair [11]. That 

is  

0 0( ) ( 2 ) ( )
1,
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0
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
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and 1 0( ) ( 1) ( )nh n h L n   , where L  is an odd integer, and the 

length of each filter is L+1. Equivalently in frequency domain, we 

have  

 0 0( ) | 2) || | (H H   
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 (1)  

Daubechies has shown in [12] that the trigonometric polynomial 

H0() of the form  
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satisfies (1) if and only if Q()=q()
2
 can be written as  
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where 2 ( / 2)y sin  , N is the vanishing moment of the 

designed wavelet, 
1

0

( )
1N

k
N

k

N k
P y

k
y





  
 
 

 , 

and R(.) is an odd polynomial, chosen such that P(y)0 for all 

y[0, 1]. 

Daubechies applies spectral factorization to construct q() 

from Q(). However, since an optimal phase response of the 

q() is expected in this paper, q(ω) should be dealt with 

directly. Accordingly, the explicit relationship between the 

q() and Q() is required and will be given in Section III. 

B. Hilbert Transform pairs 

In [4], it is shown that if H0() and G0() are two lowpass 

CQFs with  

 0 0

( )
2( ( )   for |) |

j

G H e



     ,                (4) 

then the corresponding wavelets form a Hilbert transform pair 

( ) [ ( )]g ht H t  , 

where  

( ), 0
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h
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. 

III. DESIGN SCHEME 

It has been understood that the equal magnitude response 

and half sample phase delay in (4) cannot be approached 

simultaneously [6]. Therefore, we can only design approximate 

Hilbert pairs. Based on (4), the design approximate error should 

have the following form, 

( )

0 0
2( ( ) ( fo) r |)   |

j

E e GH



      ,        (5) 

where H0() and G0() respectively satisfy the CQF pair 

constraint condition (1). 

It should be noticed that our objective function (5) is quite 

different from that in [6]. In order to see the difference, let us 

suppose that 
[ ( ) /2 ( )]

0 ) [ )( ( ]( ) jA A eH            and 

( )
0 ( () ) jG A e    , where A() and () are respectively 

the magnitude and phase approximate errors of the CQFs. In [6], 

the objective function is H0()G0() and 

H0()-G0()/2. It implies that both the magnitude and 

phase responses of the CQFs, H0() and G0(), are 

independently approximated with the small magnitude and 

phase errors A() and (). (5) can be rewritten as  
[ ( ) ( )] ( )

( ) ( ) ( )

( ) ( )

( ) ( (

( (

(
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   

    

   
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





(6) 
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where the phase error, (), is assumed small, the first order 

Taylor series expansion is used to approximate [ ( ) ( )]je     , 

and the higher-order term, ( ) ( ) ( )jje A      , is ignored. 

From (6), one can see that, the smaller the A(ω) is, the lesser 

influence the phase error () has on the error function E(). 

Furthermore, one can also find that the error function E() is 

related with both A() and (). Obviously, it may not be a 

suitable and/or optimal way to make the magnitude and phase 

responses of H0() and G0() independently approximated as 

done in [7]. What follows, the minimization of E(), which jointly 

takes the magnitude and phase errors A() and () into 

consideration as given by (5), will be described.  

It is well known that it is desirable in many applications to 

design two orthogonal wavelets with the same vanishing 

moments in order to make them have the similar properties. As a 

result, we, herein, only consider designing the CQFs with the 

same vanishing moments and length. Certainly, since the 

proposed design scheme is quite general, it can be employed to 

design the CQFs with different vanishing moments and/or filter 

length after some simple modifications. 

Suppose that the designed two CQFs are h0 and g0 

respectively. Their vanishing moments, N, is the same. 

According to (2), the frequency response of the h0 and g0 can be 

respectively written as  
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
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
,      (7) 

where H0() and G0() are the frequency responses of h0 and g0 

respectively. 

Let the FIR filters with the frequency response qh() and qg() 

be [ (0), , ( 1)]Th h h M q  and [ , , 1 ](0) ( ) T
g g g M  q  

respectively. It means that the lengths of both the h0 and g0 are 

M+N. 

A. CQF constraint 

Let us first derive the constraint (1) on h0. Since 0h  and 0g  

have the same vanishing moments and length, the constraint (1) 

on them are exactly the same. Therefore, we only give the 

constraint (1) on 0h  in this subsection, whereas the constraint 

(1) on g0 can be derived by the same way. 

From (3), it is known that Qh()=qh()
2
 should have the form 
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1
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





 
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where 
2 ( / 2)y sin  , N is the vanishing moment of the 

designed wavelet and Rh is an odd polynomial of degree M-N-1. 

Take r=M-N-1, where r is odd because M+N is odd. Suppose 
( 1)/2

2 1

0

(0.5 ) (0.5 )

r
n

h n

n

R y a y



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   . By Binomial theorem, we 

have 
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where x    represents the largest integer smaller than x . 

Suppose 
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0
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M
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k
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By comparing (10) with (9) and (8), we have 
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


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
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 . (11) 

The constraint (1) on Qh is thus (11). 

Then we will derive the relationship between Qh and qh. In 

terms of Z-transform, one has 

 1( ) ( ) ( )h h hQ z q z q z  .                         (12) 

Let 

1

1

( ) ( )

M
k

h

k M

Q z k z



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   and 

1

0

( ) ( )

M
k

h

k

q z h k z






 . Based 

on (12), the relationship between 𝜂(k), the impulse response of 

Qh, and h(k), the impulse response of qh, can be written as 

 

| |
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m n k

k h m h n
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(13) is the relationship between ( )k  and hk. 

Finally, the relationship between ( )k  and ck will be derived. 

Substituting  
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into (10), Qh can be rewritten as 
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11 (
( )

) / 2

2

k

n

n
k n

k

kt
z z

z




 
  .                   (15) 

By applying Binomial theorem twice, we can get 
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(16) shows that k
nt  in (15) is a constant only depending on k  and 

n. 

Insert (15) into (14) and consider that 
1

1

( ) ( )

M
k

h

k M

Q z k z



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  , one can get 

 

1

( )

k m

M
k
m km t c





  .                               (17) 

The analyses as above show that the constraint (1) on h0 can be 

expressed as (11), (13), and (17), where the constraint (1) on Qh is 

(11), the association between the impulse responses ( )m  of Qh 

and h(k) of qh is (13), and the relationship between ( )m  and ck 

is (17).  

B. Half sample delay joint approximation 

The half sample delay constraint of a Hilbert transform pair 

cannot be exactly realized as discussed in [6]. The techniques 

based on joint approximation of the magnitude and phase 

conditions of the half sample delay constraint to construct a 

much larger class of Hilbert pairs with better approximation 

quality are appealed in [5]. In order to respond such an appeal, 

one can obviously take (5) as an objective function to minimize 

due to the fact that the magnitude and phase conditions  of the 

half sample delay constraint are jointly included in (5). How to 

minimize (5) across all frequencies  with respect to the 

coefficients of the filters qh and qg will be given as followings. 

By substituting (7) into (5), )(E   can be rewritten as  

 
( )/2)

1
( ) [ ( ) (

2
( )]N

h

i
j

g

e
E q e q


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
   .        (18) 

It is very difficult to minimize (18) directly because it is a 

continuous frequency response. A common practice is to first 

discretize it by frequency sampling as done in [13] and then to 

minimize it in the discrete domain. The frequency sampling is a 

technique sampling the frequency response function at some 

fixed points such as 1 m       . In this way, the 

minimization of (18) is equivalent to minimizing the norm of the 

error function E() at these discrete frequency sampling points. 

Obviously, the more the sampling points, the better the samples 

reflect the frequency response across all the frequencies. 

However, the more the sampling points, the larger the computing 

burden is. Thus, the number of the sample points is usually 

chosen empirically as about 15 times of the filter length. 

Let ( ), ( ), ( )r i r
h k h k g kq q q    and ( )i

g kq   be the real and 

imaginary parts of the ( )khq   and ( )g kq   respectively, where 

k=k/T (k=-T, , T) with T much larger than M, the length of qh, 

is the discrete frequency sampling point. Their discrete Fourier 

transform can be expressed as  

 

( )

( )

[ ( ), ( )]  

[ ( ), ( )]

r i k
h k h k

r i k
g k
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g

T

T
g k

q q

q q
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 





A q

A q
,                     (19) 

where k=k/T (k=-T, , T) and 

( ) 1 cos( cos(( 1)

0 sin( ) sin((

) )

1) )

k k

k k

k M

M

 

 

 
  
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

 
A .                (20) 

Let ( () ) )(r
k k

i
kE jEE     . It can be easily seen from (18) 

and (19) that the relationship between ),( )(r
k k

iE E   and qh, 

qg is linear. 

Let the vector e defined as  

 e= ), ), ,[ ( ( ), )]( (i i
T T T

r r
TE E E E      ,          (21) 

where the elements of e are the real and imaginary parts of the 

samples of the error function (18). In order to achieve the optimal 

approximation of the half sample delay of the two CQFs in the 

sense of lp (p=1, 2, or ) norm, minimizing 
p

e  is required. 

C. Optimization formula 

In the previous subsections, we have derived the constraints 

that the h0 and g0 should satisfy to form the CQFs. The objective 

function able to be optimized to ensure the designed wavelet 

bases as an optimal approximate Hilbert pairs in the sense of the 

lp norm has also been developed. In this way, an 

optimization-based approach in the sense of lp norm to design 

pairs of dyadic wavelets bases forming an approximate Hilbert 

transform pair can be formatted as follows: 

min: ep                                                                                         

s.t.: constraints (11), (13) and (17) on                                      

h0 and g0 respectively.                                              (22) 

where e is defined by (21). Notice that (11), (17) and (21) are linear 

with respect to the designed filter h0 and g0 coefficients, whereas 

there are the bilinear terms in (13). Meanwhile, the minimization 

of ep in the sense of the lp norm is an optimization problem that 

can be efficiently solved by the state of art of the optimization 

algorithms as those given in [14] when p=1, 2, or . 

For example, minimizing e2 can be converted into the 

following second order cone programming (SOCP) problem [14] 

2

in :

. . :

m

s t u

u

e
.                                  (23) 

The e minimization can be solved via the following problem 

linear programming (LP) [14] 

. . :

min :

s t u

u

u  1 e 1
,                           (24) 

where  denotes element-wise inequity, and 1  is a all 1 vector. 

Similarly, the e1 minimization can also be got as following 

an LP [14]  

 
min :

. . :s t  

1u

u e u
.                                (25) 

As a result, if one wants to minimize the l2 norm of (22), the 

optimization problem (22) is converted to   

min: u                                                                                         

s.t.: e2u                                                                                

constraints (11), (13) and (17) on                                  

h0 and g0 respectively,                                            (26) 

where e is defined by (21). 
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If p=∞, the optimization problem (22) becomes 

min: u                                                                                          

s.t.: -u1eu1                                                                 

constraints (11), (13) and (17) on                                    

h0 and g0 respectively,                                             (27) 

where  denotes element-wise inequity, 1 is a all 1 vector, and e 

is defined by (21). 

If p=1, we can convert (22) to 

min:1u                                                                                         

s.t.: -ueu                                                                                  

constraints (11), (13) and (17) on                                    

h0 and g0 respectively,                                             (28)  

where  denotes element-wise inequity, 1  is a all 1 vector, and e 

is defined by (21). 

Since all of (26), (27) and (28) only include bilinear terms as 

their non-convexity, they are non-convex optimization problems 

called bilinear programming problem. Obviously, one cannot 

obtain their global optimal solutions by the conventional local 

optimization techniques. In the next subsection, How to obtain 

their globally optimal solutions with the branch and bound 

technique in [17] is discussed and shown. 

  

D. Solving optimization 

Bilinear programming has been widely explored in the 

optimization community. However, most existing algorithms 

either require the bilinear programming to be disjoint [15] or have 

no guarantee on the convergence to the global optimal solution 

[16]. In order to achieve the global optimal solution for our 

bilinear programming problems (26), (27) and (28), the branch and 

bound algorithm in [17] is improved to fit our problems. The main 

difference between our problem and that in [17] is that our local 

nonlinear optimization in some points could be infeasible. Thus, 

the upper bound used in this paper is different from that in [17]. 

  The branch and bound algorithms contain two parts . One is to 

find a lower and an upper bound of the given problem in a region. 

Another is to devise a branching strategy to decide which region 

should be split and bounded to achieve tighter global bounds. 

By iteratively refining the global lower and upper bounds of the 

optimization problem by branching, the provable global 

ε-suboptimal solution can be obtained when the difference 

between the global lower and upper bounds is less than ε. If ε is 

small, the obtained solution can be considered global optimal [6]. 

The upper bounds of (26), (27), and (28) in a given region can 

be obtained by local nonlinear optimization with a randomly 

chosen initial point in such region. However it is possible that 

the local nonlinear optimization with such a randomly selecting 

initial point is infeasible. If it happens, one should try to start the 

optimization with another randomly initial point in this region. 

Otherwise one may set the upper bound into  if such a case 

continually occurs, e.g., say up to 5 times. 

The lower bound is obtained by the same way as that in [17]. 

Namely, the bilinear term xy  in domain [ , ] [ , ]u ll ux x y y  can be 

bounded by the following equation 

 
max{

mi

, }

, }n{ u u

l l l l u u u u

l ll u l u

xy y y x x y x y y x x y

xy y y x x y x y y x x y

x

x

   

   


.       (29) 

(29) can both be transformed into the following inequities 

 
,

,

l l l l u u u u

l l u uu u l l

xy y y x x y xy x y y x x y

xy y y x x y xy x y

x

x y x x y

   

   

 

 
.         (30) 

It should be emphasized that the inequities in (30) is linear 

because the boundaries, xl, xu, yl, and yu of the domain 

[ , ] [ , ]u ll ux x y y  are known. By inserting (30) into (13) in (26), 

(27), and (28) respectively, (27) and (28) are relaxed into the linear 

programming problems, which can be conveniently solved by 

the simplex algorithm or the interior point algorithm [14], while 

(26) is relaxed into a second order cone programming problem 

that can also be efficiently solved. The lower bound of such a 

region can thus be attained by solving the corresponding 

relaxed problem. 

Our branching strategy is to choose the region with the 

smallest lower bound and then the longest edge of this region 

corresponding to a variable in the bilinear terms is bisected. Let 
l
k  and h

k  be the global lower and upper bounds respectively. 

k  is the set of the regions at iteration k . D0 is the domain of the 

optimization problem (26), (27) or (28). ( )lb D  and ( )ub D are 

the upper and lower bounds of the region D respectively. In that 

way, our optimal algorithm can be summarized as follows: 

 Set k=0, 00 { }D  

 while h l
k k     

 choose kD such that ( ) l
lb kD   

 bisect the longest edge of D that corresponds 

only to some bilinear variables to form two 

rectangular 1D and 2D . 

 0 1 21 { \ } { , }k k D D D     

 solve 1( )ub D , 2( )ub D , 1( )lb D  and 

2( )lb D  

 1 1 2min{ , ( }( ) ),h h
k k ub ubD D    

 1 1 2min{ , ( }( ) ),l l
k k lb lbD D    

 k=k+1 

IV. DESIGN EXAMPLES 

In our design examples, the number of sampling points of 

frequency sampling is 50. Each coefficient in hq  and gq is 

bounded in [-3, 3]. 

A scaling filter pair with length 8 and vanishing moment 2 is 

first designed by the approach in this paper with l1 norm 

minimization. Table I tabulates the designed filter coefficients. 

Their magnitude responses , 0 )(G   and 0 )(H  , and the 

phase offset )(   are illustrated in Fig. 1. It can be observed 

from the Fig. 1 that the magnitude responses of the filter pair 
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0 )(G   and 0 )(H   are nearly equal, while their phase shift 

)(   is very close / 2  except near frequency   . 

Because the magnitude responses near frequency    are 

very small, the phase shift errors near frequency   do not 

have much effect on the overall approximation performance of 

the designed wavelet bases. 

Let |e1| denote the magnitude response of the error function 

of our wavelet pair in Table I designed in the sense of the l1 norm 

minimization and |es| represent that of Shi et. al. wavelet pair (refer 

to the Table I of [6]). Form Fig. 2. It can be seen that the |e1| is 

smaller than the |es| across all the frequency and much smaller 

than the |es| at low frequencies. As stated in Section III, the 

magnitude responses of the scaling filters are large at low 

frequencies and small at high frequencies . Fig. 2 shows that our 

design scheme weights the phase response errors at low 

frequencies more than those at high frequencies in order to make 

the error function (5) nearly equal across all the frequencies. 

However the design scheme in [6] independently minimizes the 

magnitude and phase response errors without taking the 

interaction between the phase and magnitude responses into 

consideration. In this way, the scaling filter pairs designed in [6] 

have small errors at low frequencies but large ones at high 

frequencies. This is why the approximation quality to Hilbert pair 

of scaling filter pairs designed in [6] is worse than the pairs 

designed here. 

  Two scaling filter pairs with length 8 and vanishing moment 2 

are designed by (26) and (27) respectively. That is to 

respectively approach the design optimization in the sense of 

the l∞ and l2 norm minimizations. The designed filter coefficients 

are tabulated respectively in Table II and III. Let |e∞|, |e2|, and |e1| 

respectively denote the magnitude response error functions in 

the sense of the l∞, l2, and l1 norm minimizations. It can be seen 

from Fig. 3 that the maximum values of the |e1| and |e∞| are nearly 

the same. However, |e1| is much smaller than |e∞| except at a 

narrow high frequency band. It can also be found that the |e2| is 

much larger than the |e1| and |e∞|. In many applications, such as 

image processing [18], machine learning [19] and pattern 

recognition [20], it is found that the better results are obtained 

when an objective function is optimized by the l1 norm 

minimization instead of the l2 and l∞ norm ones. Our applications 

as above also verify such a case. Consequently, it is 

recommended to design the wavelet bases approximated as a 

Hilbert pair by minimizing the error function (5) in the sense of 

the l1 norm. 

Other 3 scaling filter pairs are designed with our scheme by l1 

norm minimization. The filter coefficients of these filters are 

tabulated in Table IV, Table V, and Table VI respectively. The 

length of first filter is 10 and its vanishing moment is 3. The 

second filter is of length 12 and vanishing moment 4. The last 

filter is also of length 12, but its vanishing moment is 3. 

If a pair of wavelets ( ( ), ( ))h gt t  with the frequency 

response ( ( ), ( ))h g    is related through the Hilbert 

transform. Tay et. al. propose the following two measures, 

1E ( L  measure) and 2E ( 2L measure) in [21], to evaluate the 

approximation quality of the pair of wavelet bases as a Hilbert 

transform pair, 

2

0
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0

0
2

2

0

max | ) ) |

m

( (

( (ax | ) ) |

| ) ) |
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
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  These two measures are also employed as the criteria to 

evaluate the wavelet bases we design and those in [4], [5] and [6]. 

Cascade algorithm with 10 levels is utilized to create the wavelet 

function. The results are tabulated in Table VII, where the 

wavelet bases designed in this paper are listed in bold. It can be 

seen from Table VII that the wavelet bases designed by us have 

the best approximation quality. Table VII also shows that the 

approximation quality of the wavelet bases designed by 

minimizing the l1 norm of the error function (5) is much better 

than that by minimizing its l∞ and l2 norm. 

V. CONCLUSIONS 

In this paper, a novel scheme for designing the approximate 

Hilbert pairs of orthonormal wavelet bases  has been proposed. 

In our scheme, the magnitude and phase conditions  of the 

scaling filters of the CQF banks are jointly taken as the objective 

function of an optimization problem. The condition of the CQF 

banks is taken as the constraint of such an optimization problem. 

The objective function takes the combined influences of the 

magnitude and phase conditions of the scaling filters on 

approximation quality of the designed wavelet pair to the Hilbert 

transform pair into consideration. It can, therefore, better reflect 

the approximation quality of the designed wavelet pair. The 

branch and bound technique, which can guarantee a globally 

optimal solution, is employed to solve our non-convex 

optimization problem. Therefore, the optimization result of our 

scheme does not depend on the initial starting point chosen and 

is always consistent. The superiority of our design scheme over 

those reported in literatures is demonstrated by two commonly 

applied evaluation criteria. Furthermore, it is found that the 

minimization of the l1 norm version of our constrained 

optimization problem yields the best approximation performance. 
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Fig. 1.  ( )x is phase offset , and | )( |H  and | )( |G  are 

respectively the magnitude responses of the two scaling filters in Table 

I.  

 

Fig. 2.  1e is the error function of our wavelet  pair in Table I, 

and se is the error function of the wavelet pair in Table I in 

[6]. 
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Fig. 3.  1e is the error function of our wavelet pair in Table I 

designed by 1l  norm, while e is the error function of our 

wavelet pair in Table II, designed by l  norm and 2e is the error 

function of our wavelet pair in Table III designed by 2l  norm. 

 
TABLE I 

FILTER COEFFICIENTS WITH LENGTH 8 AND VANISHING MOMENT 

2 DESIGNED BY 1l  NORM 

0h  0g  

-0.00427959286786331 -0.00499789193762367 

0.044171008982978 0.019187661828230
 

-0.0630382813630226 0.026308453148234 

-0.187282514910405 -0.174635809332290 

0.352664111817497
 

0.001414777458855 

0.809354163953011 0.684300031715614 

0.421760543599936 0.684381442517082 

0.040864123160963 0.178254896974993 

 
TABLE II 

FILTER COEFFICIENTS WITH LENGTH 8 AND VANISHING 

MOMENT 2 DESIGNED BY l  NORM 

0h  0g  

0.227160307638364 0.0618374780870480 

0.734065609480335 0.487642510575487
 

0.618016255787673 0.804531208889083 

-0.0587534404167462 0.261874031694562 

-0.150679923188365
 

-0.198843772960451 

0.0356969542878341 -0.0373911254434504 

0.0126101409488755 0.0395818671708672 

-0.00390234216487549 -0.00501863564005050 

 

TABLE III 

FILTER COEFFICIENTS WITH LENGTH 8 AND VANISHING 

MOMENT 2 DESIGNED BY 2l  NORM 

0h  0g  

-0.0577494199391096 -0.0285743106243928 

0.113358418339598 -0.0410402363109904
 

0.693720956105754 0.391384397749186 

0.697631734865556 0.829191501052854 

0.0559947553429332
 

0.379263182559141 

-0.111596926419519 -0.105399856395129 

0.0151404896769704 -0.0349664884973866 

0.00771355440091325 0.0243553728398125 

 

TABLE IV 

FILTER COEFFICIENTS WITH LENGTH 10 AND VANISHING 

MOMENT 3 DESIGNED BY 1l  NORM 

0h  0g  

0.011345021299679 0.004986233899958 

-0.048447333286726 -0.00182067141304808
 

-0.127651231082182 -0.111840341090044 

0.256996780929455 -0.0119570379697445 

0.792592842872745
 

0.581634000859109 

0.533170244143429 0.770131860164237 

6.992371732989937e-04 0.223697454824697 

-0.0416767924640835 -0.0721671613011585 

0.030120910923006 0.008629432692828 

0.007063881864474 0.022919791706262 

 
TABLE V 

FILTER COEFFICIENTS WITH LENGTH 12 AND VANISHING 

MOMENT 4 DESIGNED BY 1l  NORM 

0h  0g  

0.019660953491772 0.005979749053996 

0.036872657072564 0.034572185640262
 

-0.013057772609847 0.014753684202904 

0.145920889738894 0.011155758186297 

0.652405799239501  0.390261068273897 

0.704226352135325 0.789405451872293 

0.090621780240148 0.424670939341782 

-0.209645338659644 -0.143871375304897 

-0.045390840545540 -0.145806578467158 

0.0312619618609236 0.018827811759382 

0.002866861370513 0.017247918781127 

-0.001529740961514 -0.002983050966790 
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TABLE VII 

1E AND 2E OF DIFFERENT WAVELET BASES 

The Filter length vanishing 

moment 
1E  2E  

Table I Designed 

by l1 Norm 

8 2 0.0048 4.6314E-5 

Table I in [6] 8 3,2 0.0118
 

1.1267E-4 

Table II Designed 

by l∞ Norm 

8 2 0.0127 1.4075E-4 

Table III Designed 

by l2 Norm 

8 2 0.0291 6.8593E-4 

Table IV Designed 

by l1 Norm 

10 3 0.0030 1.3949E-5 

Table II in [6] 10 4,3 0.0121 2.081E-4 

Example 2 in [4]
 

10 3 0.0215 6.0204E-4 

Table V Designed 

by l1 Norm 

12  4 0.0020 5.4010E-6 

Table III-A in [6] 12  5,4 0.0025 5.951E-5 

Example 1 in [5] 12  4 0.0163 3.5389E-4 

Table VI Designed 

by l1 Norm 

12 3 0.0013 2.6570E-6 

Table III-B in [6] 12 4,3 0.0027 6.959E-6 

Example 2 in [5] 12 3 0.0069 4.9798E-5 

 

TABLE VI 

FILTER COEFFICIENTS WITH LENGTH 12 AND VANISHING MOMENT 

3 DESIGNED BY 1l  NORM 

0h  0g  

0.00184807508959416 -0.000330561407625855 

0.0220242771710574 0.0111727200722846
 

-0.0392361517965246 0.0131425880952590 

-0.189542114839093 -0.128014156561420 

0.102050660942876
 

-0.129120728397650 

0.719196501572041 0.438201769576917 

0.643493577302726 0.797167311190643 

0.119314868728622 0.365883340298733 

-0.0142880986540894 -0.00356154745295836 

0.0365280289628551 0.0177028622275966 

0.0132387183019659 0.0298097191588802 

-0.000414780408934431 0.00216024557243620 

 


