

LEARNING FINE - GRAINED I MAGE SIMILARITY WITH DEEP RANKING

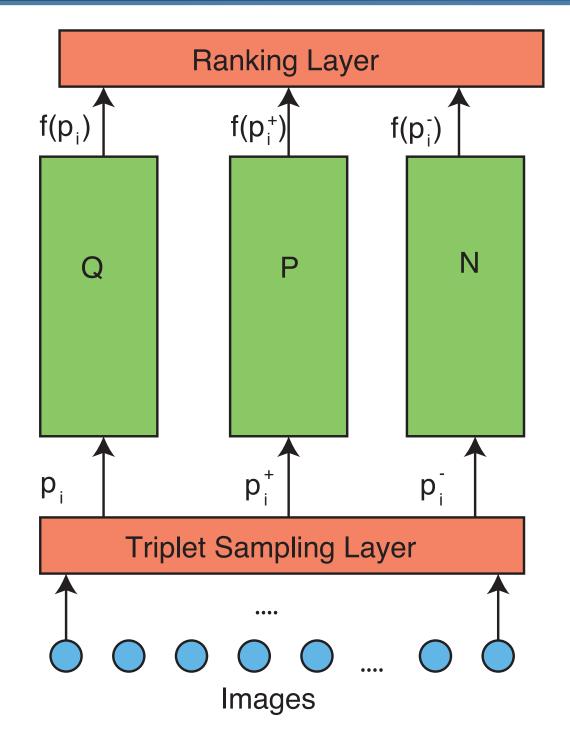
Jiang Wang(Northwestern) Yang Song (Google) (Google) James Philbin (Google)

Problem

Fine-grained image similarity, for images with the same category. It is for image-search application, defined by triplets.

- image similarities are defined subtle difference.
- it is more difficult to obtain triplet training data.
- we would like to train a model directly from images instead of rely on the hand-crafted features.

ARCHITECTURE



- a novel deep learning that can learns finegrained image similarity model directly from images.
- a multi-scale network structure.
- a computationally efficient online triplet sampling algorithm.
- high quality triplet evaluation dataset.

D ATA

High quality image triplet evaluation dataset: Available at

https://sites.google.com/site/imagesimilaritydata/

ng Song (Google) Thomas Leung (Google) C James Philbin (Google) Bo Chen (Caltech) Y

Related Work

- category-level image similarity: the similarities are purely defined by labels.
- classification deep learning models.
- pairwise ranking model.

FORMULATION

The similarity of two images P and Q can be defined according to their squared Euclidean distance in the image embedding space:

$$D(f(P), f(Q)) = f(P) - f(Q)_{2}^{2}$$
 (1)

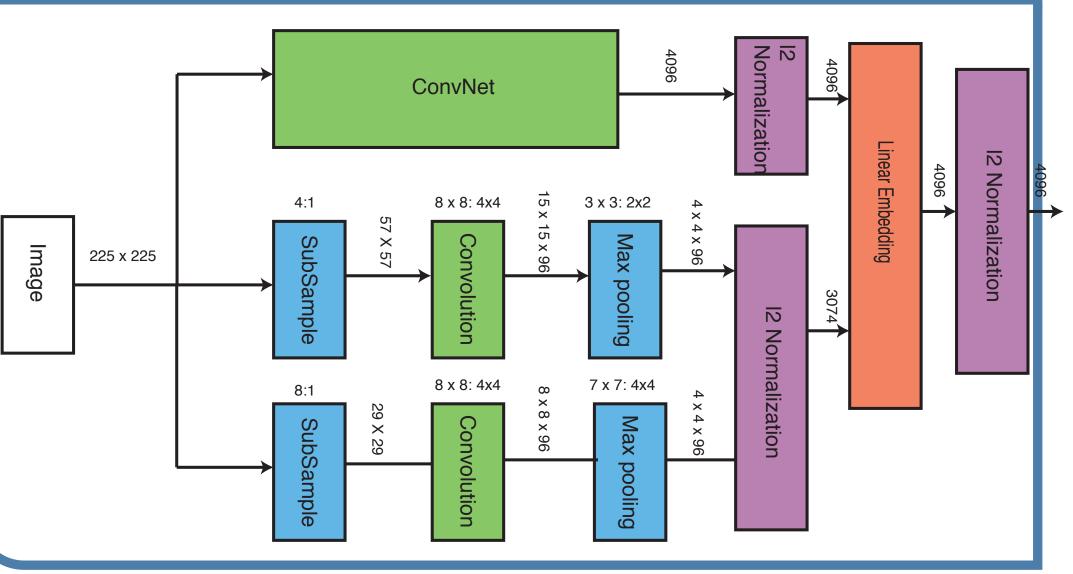
Triplet-based Objective: $r_{i,j} = r(p_i, p_j)$ is pairwise relevance score.

D (f (p_i), f (p_i^+)) < D (f (p_i), f (p_i^-)), p_i, p_i⁺, p_i⁻ such that r(p_i , p_i^+) > r (p_i , p_i^-)

 $t_i = (p_i, p_i^+, p_i^-)$ a triplet. The hinge loss is:

 $I(p_{i}, p_{i}^{+}, p_{i}^{-}) = \max \{0, g + D(f(p_{i}), f(p_{i}^{+})) - D(f(p_{i}), f(p_{i}^{-}))\}$ (3)

MULTI -SCALE ARCHITECTURE



TRAINING DATA

- ImageNet for pre-training. Category-level information.
- Relevance training data. Fine-grained visual information.
 - Golden Feature, good for visual similarity but not so good for semantic similarity, and it is expensive to compute,

(2)

Chuck Rosenberg (Google) Jingbin Wang Ying Wu (Northwestern)

TIMIZATION

- Asynchronized stochastic gradient algorithm.
- Momentum algorithm.
- Dropout to avoid overfitting

enges:

- Cannot enumerate all the triplets, need to sample important triplets.
- Cannot load all the images into memory, need to generate triplets online.

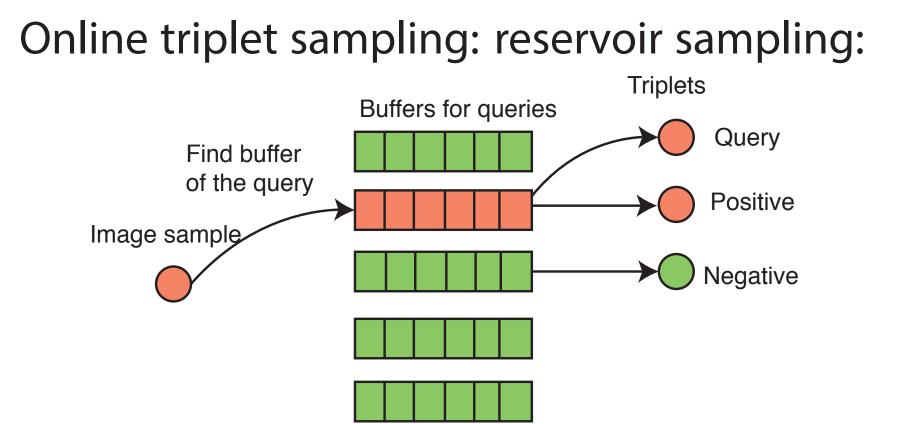
PLET SAMPLING

ampling criteria: we sample more highly relt images.

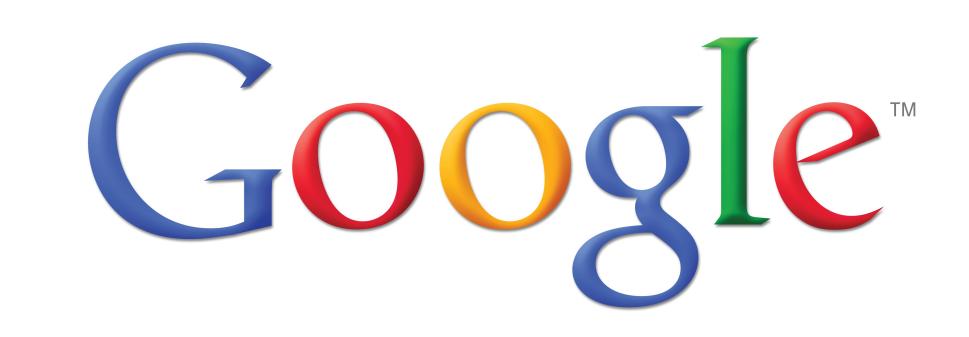
otal relevance score r_i:

$$r_i = r_{i,j}$$
 (4
 $j:c_j = c_i, j = i$

- For query image: according to total relevance score.
- For positive image: sample images with the same label as the query image, sampling $\min\{T_{p}, r_{ii}, +\}$
- probability is $P(p_i^+) = \frac{\min \{T_p, r_{i,i}^+\}}{Z_i}$. • For negative image, we have two types of samples:
 - 1. in-class negative: we draw in-class negative samples p_i^- with the same distribution as the positive image. We also require that the margin between the relevance score $r_{i,i}$ + and $r_{i,i}$ should be larger than T_r
 - 2. out-of-class negative: drawn uniformly from all the images in different categories.



Ехр	ERIN
C	ompa
	SPM
	L
	Go [
Com	oarisc
	Sing
	SIS on ngle-So
	[
CC 7200	
7100	
0089 Score at 30	
6700 6600)-
	0 0.2 Fraction o
RAM	NKIN
	Qu
	ConvNet
	OASIS
	Deep Ranking
	ConvNet
	OASIS
	Deep Ranking
	G



MENTS

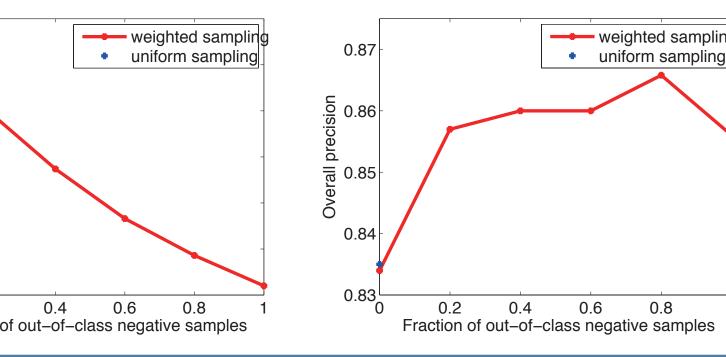
arison with hand-crafted features:

Method	Precision	Score-30
Wavelet	62.2%	2735
Color	62.3%	2935
SIFT-like	65.5%	2863
Fisher	67.2%	3064
HOG	68.4%	3099
IKtexton1024max	66.5%	3556
L1HashKPCA	76.2%	6356
OASIS	79.2%	6813
iolden Features	80.3%	7165
DeepRanking	85.7%	7004

on of different architectures:

Method	Precision	Score-30
ConvNet	82.8%	5772
gle-scale Ranking	84.6%	6245
Single-scale Ranking	82.5%	6263
cale & Visual Feature	84.1%	6765
DeepRanking	85.7%	7004

rison of different sampling methods:



G Examples

ACKNOWLEDGMENT

The work was done when the first author is working as an intern at Google.